欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Spark筆記整理(一):spark單機安裝部署、分布式集群與HA安裝部署+spark源碼編譯

[TOC]

創(chuàng)新互聯(lián)專注于網(wǎng)站建設,為客戶提供成都做網(wǎng)站、網(wǎng)站建設、網(wǎng)頁設計開發(fā)服務,多年建網(wǎng)站服務經驗,各類網(wǎng)站都可以開發(fā),品牌網(wǎng)站建設,公司官網(wǎng),公司展示網(wǎng)站,網(wǎng)站設計,建網(wǎng)站費用,建網(wǎng)站多少錢,價格優(yōu)惠,收費合理。


spark單機安裝部署

1.安裝scala
解壓:tar -zxvf soft/scala-2.10.5.tgz -C app/
重命名:mv scala-2.10.5/ scala
配置到環(huán)境變量:
export SCALA_HOME=/home/uplooking/app/scala
export PATH=$PATH:$SCALA_HOME/bin
# 雖然spark本身自帶scala,但還是建議安裝

2.安裝單機版spark
解壓:tar -zxvf soft/spark-1.6.2-bin-hadoop2.6.tgz -C app/
重命名:mv spark-1.6.2-bin-hadoop2.6/ spark
配置到環(huán)境變量:
export SPARK_HOME=/home/uplooking/app/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin
測試:
運行一個簡單的spark程序
spark-shell
sc.textFile("./hello").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)

完全分布式安裝

修改spark-env.sh
    1、cd /home/uplooking/app/spark/conf
    2、cp spark-env.sh.template spark-env.sh
    3、vi spark-env.sh
    export JAVA_HOME=/opt/jdk
    export SCALA_HOME=/home/uplooking/app/scala
    export SPARK_MASTER_IP=uplooking01
    export SPARK_MASTER_PORT=7077
    export SPARK_WORKER_CORES=1
    export SPARK_WORKER_INSTANCES=1
    export SPARK_WORKER_MEMORY=1g
    export HADOOP_CONF_DIR=/home/uplooking/app/hadoop/etc/hadoop
修改slaves配置文件
    添加兩行記錄
    uplooking02
    uplooking03
部署到uplooking02和uplooking03這兩臺機器上(這兩臺機器需要提前安裝scala)
    scp -r /home/uplooking/app/scala uplooking@uplooking02:/home/uplooking/app
    scp -r /home/uplooking/app/scala uplooking@uplooking03:/home/uplooking/app
    ----
    scp -r /home/uplooking/app/spark uplooking@uplooking02:/home/uplooking/app
    scp -r /home/uplooking/app/spark uplooking@uplooking03:/home/uplooking/app
    ---在uplooking02和uplooking03上加載好環(huán)境變量,需要source生效
    scp /home/uplooking/.bash_profile uplooking@uplooking02:/home/uplooking
    scp /home/uplooking/.bash_profile uplooking@uplooking03:/home/uplooking
啟動
    修改事宜
        為了避免和hadoop中的start/stop-all.sh腳本發(fā)生沖突,將spark/sbin/start/stop-all.sh重命名
        mv start-all.sh start-spark-all.sh
        mv stop-all.sh stop-spark-all.sh
    啟動
        sbin/start-spark-all.sh
        會在我們配置的主節(jié)點uplooking01上啟動一個進程Master
        會在我們配置的從節(jié)點uplooking02上啟動一個進程Worker
        會在我們配置的從節(jié)點uplooking03上啟動一個進程Worker
    簡單的驗證
        啟動spark-shell
        bin/spark-shell
        scala> sc.textFile("hdfs://ns1/data/hello").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_).collect.foreach(println)
        我們發(fā)現(xiàn)spark非常快速的執(zhí)行了這個程序,計算出我們想要的結果

    一個端口:8080/4040
        8080-->spark集群的訪問端口,類似于hadoop中的50070和8088的綜合
        4040-->sparkUI的訪問地址
        7077-->hadoop中的9000端口

基于zookeeper的HA配置

最好在集群停止的時候來做
第一件事
    注釋掉spark-env.sh中兩行內容
        #export SPARK_MASTER_IP=uplooking01
        #export SPARK_MASTER_PORT=7077
第二件事
    在spark-env.sh中加一行內容
        export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=uplooking01:2181,uplooking02:2181,uplooking03:2181 -Dspark.deploy.zookeeper.dir=/spark"
    解釋
        spark.deploy.recoveryMode設置成 ZOOKEEPER
        spark.deploy.zookeeper.urlZooKeeper URL
        spark.deploy.zookeeper.dir ZooKeeper 保存恢復狀態(tài)的目錄,缺省為 /spark
重啟集群
    在任何一臺spark節(jié)點上啟動start-spark-all.sh
    手動在集群中其他從節(jié)點上再啟動master進程:sbin/start-master.sh -->在uplooking02
通過瀏覽器方法 uplooking01:8080 /uplooking02:8080-->Status: STANDBY Status: ALIVE
    驗證HA,只需要手動停掉master上spark進程Master,等一會slave01上的進程Master狀態(tài)會從STANDBY編程ALIVE

# 注意,如果在uplooking02上啟動,此時uplooking02也會是master,而uplooking01則都不是,
# 因為配置文件中并沒有指定master,只指定了slave
# spark-start-all.sh也包括了start-master.sh的操作,所以才會在該臺機器上也啟動master.

Spark源碼編譯

安裝好maven后,并且配置好本地的spark倉庫(不然編譯時依賴從網(wǎng)上下載會很慢),
然后就可以在spark源碼目錄執(zhí)行下面的命令:
mvn -Pyarn -Dhadoop.version=2.6.4 -Dyarn.version=2.6.4 -DskipTests clean package

編譯成功后輸出如下:

......
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary:
[INFO] 
[INFO] Spark Project Parent POM ........................... SUCCESS [  3.617 s]
[INFO] Spark Project Test Tags ............................ SUCCESS [ 17.419 s]
[INFO] Spark Project Launcher ............................. SUCCESS [ 12.102 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 11.878 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [  7.324 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 16.326 s]
[INFO] Spark Project Core ................................. SUCCESS [04:31 min]
[INFO] Spark Project Bagel ................................ SUCCESS [ 11.671 s]
[INFO] Spark Project GraphX ............................... SUCCESS [ 55.420 s]
[INFO] Spark Project Streaming ............................ SUCCESS [02:03 min]
[INFO] Spark Project Catalyst ............................. SUCCESS [02:40 min]
[INFO] Spark Project SQL .................................. SUCCESS [03:38 min]
[INFO] Spark Project ML Library ........................... SUCCESS [03:56 min]
[INFO] Spark Project Tools ................................ SUCCESS [ 15.726 s]
[INFO] Spark Project Hive ................................. SUCCESS [02:30 min]
[INFO] Spark Project Docker Integration Tests ............. SUCCESS [ 11.961 s]
[INFO] Spark Project REPL ................................. SUCCESS [ 42.913 s]
[INFO] Spark Project YARN Shuffle Service ................. SUCCESS [  8.391 s]
[INFO] Spark Project YARN ................................. SUCCESS [ 42.013 s]
[INFO] Spark Project Assembly ............................. SUCCESS [02:06 min]
[INFO] Spark Project External Twitter ..................... SUCCESS [ 19.155 s]
[INFO] Spark Project External Flume Sink .................. SUCCESS [ 22.164 s]
[INFO] Spark Project External Flume ....................... SUCCESS [ 26.228 s]
[INFO] Spark Project External Flume Assembly .............. SUCCESS [  3.838 s]
[INFO] Spark Project External MQTT ........................ SUCCESS [ 33.132 s]
[INFO] Spark Project External MQTT Assembly ............... SUCCESS [  7.937 s]
[INFO] Spark Project External ZeroMQ ...................... SUCCESS [ 17.900 s]
[INFO] Spark Project External Kafka ....................... SUCCESS [ 37.597 s]
[INFO] Spark Project Examples ............................. SUCCESS [02:39 min]
[INFO] Spark Project External Kafka Assembly .............. SUCCESS [ 10.556 s]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 31:22 min
[INFO] Finished at: 2018-04-24T18:33:58+08:00
[INFO] Final Memory: 89M/1440M
[INFO] ------------------------------------------------------------------------

然后就可以在下面的目錄中看到編譯成功的文件:

[uplooking@uplooking01 scala-2.10]$ pwd
/home/uplooking/compile/spark-1.6.2/assembly/target/scala-2.10
[uplooking@uplooking01 scala-2.10]$ ls -lh
總用量 135M
-rw-rw-r-- 1 uplooking uplooking 135M 4月  24 18:28 spark-assembly-1.6.2-hadoop2.6.4.jar

在已經安裝的spark的lib目錄下也可以看到該文件:

[uplooking@uplooking01 lib]$ ls -lh
總用量 291M
-rw-r--r-- 1 uplooking uplooking 332K 6月  22 2016 datanucleus-api-jdo-3.2.6.jar
-rw-r--r-- 1 uplooking uplooking 1.9M 6月  22 2016 datanucleus-core-3.2.10.jar
-rw-r--r-- 1 uplooking uplooking 1.8M 6月  22 2016 datanucleus-rdbms-3.2.9.jar
-rw-r--r-- 1 uplooking uplooking 6.6M 6月  22 2016 spark-1.6.2-yarn-shuffle.jar
-rw-r--r-- 1 uplooking uplooking 173M 6月  22 2016 spark-assembly-1.6.2-hadoop2.6.0.jar
-rw-r--r-- 1 uplooking uplooking 108M 6月  22 2016 spark-examples-1.6.2-hadoop2.6.0.jar

文章題目:Spark筆記整理(一):spark單機安裝部署、分布式集群與HA安裝部署+spark源碼編譯
文章轉載:http://www.chinadenli.net/article8/joigip.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供App開發(fā)服務器托管外貿建站手機網(wǎng)站建設企業(yè)建站App設計

廣告

聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

手機網(wǎng)站建設