本篇內容介紹了“PostgreSQL中BufTableInsert函數(shù)有什么作用”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!

和順ssl適用于網(wǎng)站、小程序/APP、API接口等需要進行數(shù)據(jù)傳輸應用場景,ssl證書未來市場廣闊!成為創(chuàng)新互聯(lián)公司的ssl證書銷售渠道,可以享受市場價格4-6折優(yōu)惠!如果有意向歡迎電話聯(lián)系或者加微信:18982081108(備注:SSL證書合作)期待與您的合作!
BufferDesc
共享緩沖區(qū)的共享描述符(狀態(tài))數(shù)據(jù)
/*
* Flags for buffer descriptors
* buffer描述器標記
*
* Note: TAG_VALID essentially means that there is a buffer hashtable
* entry associated with the buffer's tag.
* 注意:TAG_VALID本質上意味著有一個與緩沖區(qū)的標記相關聯(lián)的緩沖區(qū)散列表條目。
*/
//buffer header鎖定
#define BM_LOCKED (1U << 22) /* buffer header is locked */
//數(shù)據(jù)需要寫入(標記為DIRTY)
#define BM_DIRTY (1U << 23) /* data needs writing */
//數(shù)據(jù)是有效的
#define BM_VALID (1U << 24) /* data is valid */
//已分配buffer tag
#define BM_TAG_VALID (1U << 25) /* tag is assigned */
//正在R/W
#define BM_IO_IN_PROGRESS (1U << 26) /* read or write in progress */
//上一個I/O出現(xiàn)錯誤
#define BM_IO_ERROR (1U << 27) /* previous I/O failed */
//開始寫則變DIRTY
#define BM_JUST_DIRTIED (1U << 28) /* dirtied since write started */
//存在等待sole pin的其他進程
#define BM_PIN_COUNT_WAITER (1U << 29) /* have waiter for sole pin */
//checkpoint發(fā)生,必須刷到磁盤上
#define BM_CHECKPOINT_NEEDED (1U << 30) /* must write for checkpoint */
//持久化buffer(不是unlogged或者初始化fork)
#define BM_PERMANENT (1U << 31) /* permanent buffer (not unlogged,
* or init fork) */
/*
* BufferDesc -- shared descriptor/state data for a single shared buffer.
* BufferDesc -- 共享緩沖區(qū)的共享描述符(狀態(tài))數(shù)據(jù)
*
* Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change
* the tag, state or wait_backend_pid fields. In general, buffer header lock
* is a spinlock which is combined with flags, refcount and usagecount into
* single atomic variable. This layout allow us to do some operations in a
* single atomic operation, without actually acquiring and releasing spinlock;
* for instance, increase or decrease refcount. buf_id field never changes
* after initialization, so does not need locking. freeNext is protected by
* the buffer_strategy_lock not buffer header lock. The LWLock can take care
* of itself. The buffer header lock is *not* used to control access to the
* data in the buffer!
* 注意:必須持有Buffer header鎖(BM_LOCKED標記)才能檢查或修改tag/state/wait_backend_pid字段.
* 通常來說,buffer header lock是spinlock,它與標記位/參考計數(shù)/使用計數(shù)組合到單個原子變量中.
* 這個布局設計允許我們執(zhí)行原子操作,而不需要實際獲得或者釋放spinlock(比如,增加或者減少參考計數(shù)).
* buf_id字段在初始化后不會出現(xiàn)變化,因此不需要鎖定.
* freeNext通過buffer_strategy_lock鎖而不是buffer header lock保護.
* LWLock可以很好的處理自己的狀態(tài).
* 務請注意的是:buffer header lock不用于控制buffer中的數(shù)據(jù)訪問!
*
* It's assumed that nobody changes the state field while buffer header lock
* is held. Thus buffer header lock holder can do complex updates of the
* state variable in single write, simultaneously with lock release (cleaning
* BM_LOCKED flag). On the other hand, updating of state without holding
* buffer header lock is restricted to CAS, which insure that BM_LOCKED flag
* is not set. Atomic increment/decrement, OR/AND etc. are not allowed.
* 假定在持有buffer header lock的情況下,沒有人改變狀態(tài)字段.
* 持有buffer header lock的進程可以執(zhí)行在單個寫操作中執(zhí)行復雜的狀態(tài)變量更新,
* 同步的釋放鎖(清除BM_LOCKED標記).
* 換句話說,如果沒有持有buffer header lock的狀態(tài)更新,會受限于CAS,
* 這種情況下確保BM_LOCKED沒有被設置.
* 比如原子的增加/減少(AND/OR)等操作是不允許的.
*
* An exception is that if we have the buffer pinned, its tag can't change
* underneath us, so we can examine the tag without locking the buffer header.
* Also, in places we do one-time reads of the flags without bothering to
* lock the buffer header; this is generally for situations where we don't
* expect the flag bit being tested to be changing.
* 一種例外情況是如果我們已有buffer pinned,該buffer的tag不能改變(在本進程之下),
* 因此不需要鎖定buffer header就可以檢查tag了.
* 同時,在執(zhí)行一次性的flags讀取時不需要鎖定buffer header.
* 這種情況通常用于我們不希望正在測試的flag bit將被改變.
*
* We can't physically remove items from a disk page if another backend has
* the buffer pinned. Hence, a backend may need to wait for all other pins
* to go away. This is signaled by storing its own PID into
* wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER. At present,
* there can be only one such waiter per buffer.
* 如果其他進程有buffer pinned,那么進程不能物理的從磁盤頁面中刪除items.
* 因此,后臺進程需要等待其他pins清除.這可以通過存儲它自己的PID到wait_backend_pid中,
* 并設置標記位BM_PIN_COUNT_WAITER.
* 目前,每個緩沖區(qū)只能由一個等待進程.
*
* We use this same struct for local buffer headers, but the locks are not
* used and not all of the flag bits are useful either. To avoid unnecessary
* overhead, manipulations of the state field should be done without actual
* atomic operations (i.e. only pg_atomic_read_u32() and
* pg_atomic_unlocked_write_u32()).
* 本地緩沖頭部使用同樣的結構,但并不需要使用locks,而且并不是所有的標記位都使用.
* 為了避免不必要的負載,狀態(tài)域的維護不需要實際的原子操作
* (比如只有pg_atomic_read_u32() and pg_atomic_unlocked_write_u32())
*
* Be careful to avoid increasing the size of the struct when adding or
* reordering members. Keeping it below 64 bytes (the most common CPU
* cache line size) is fairly important for performance.
* 在增加或者記錄成員變量時,小心避免增加結構體的大小.
* 保持結構體大小在64字節(jié)內(通常的CPU緩存線大小)對于性能是非常重要的.
*/
typedef struct BufferDesc
{
//buffer tag
BufferTag tag; /* ID of page contained in buffer */
//buffer索引編號(0開始),指向相應的buffer pool slot
int buf_id; /* buffer's index number (from 0) */
/* state of the tag, containing flags, refcount and usagecount */
//tag狀態(tài),包括flags/refcount和usagecount
pg_atomic_uint32 state;
//pin-count等待進程ID
int wait_backend_pid; /* backend PID of pin-count waiter */
//空閑鏈表鏈中下一個空閑的buffer
int freeNext; /* link in freelist chain */
//緩沖區(qū)內容鎖
LWLock content_lock; /* to lock access to buffer contents */
} BufferDesc;BufferTag
Buffer tag標記了buffer存儲的是磁盤中哪個block
/*
* Buffer tag identifies which disk block the buffer contains.
* Buffer tag標記了buffer存儲的是磁盤中哪個block
*
* Note: the BufferTag data must be sufficient to determine where to write the
* block, without reference to pg_class or pg_tablespace entries. It's
* possible that the backend flushing the buffer doesn't even believe the
* relation is visible yet (its xact may have started before the xact that
* created the rel). The storage manager must be able to cope anyway.
* 注意:BufferTag必須足以確定如何寫block而不需要參照pg_class或者pg_tablespace數(shù)據(jù)字典信息.
* 有可能后臺進程在刷新緩沖區(qū)的時候深圳不相信關系是可見的(事務可能在創(chuàng)建rel的事務之前).
* 存儲管理器必須可以處理這些事情.
*
* Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have
* to be fixed to zero them, since this struct is used as a hash key.
* 注意:如果在結構體中有填充的字節(jié),INIT_BUFFERTAG必須將它們固定為零,因為這個結構體用作散列鍵.
*/
typedef struct buftag
{
//物理relation標識符
RelFileNode rnode; /* physical relation identifier */
ForkNumber forkNum;
//相對于relation起始的塊號
BlockNumber blockNum; /* blknum relative to begin of reln */
} BufferTag;HTAB
哈希表的頂層控制結構.
/*
* Top control structure for a hashtable --- in a shared table, each backend
* has its own copy (OK since no fields change at runtime)
* 哈希表的頂層控制結構.
* 在這個共享哈希表中,每一個后臺進程都有自己的拷貝
* (之所以沒有問題是因為fork出來后,在運行期沒有字段會變化)
*/
struct HTAB
{
//指向共享的控制信息
HASHHDR *hctl; /* => shared control information */
//段開始目錄
HASHSEGMENT *dir; /* directory of segment starts */
//哈希函數(shù)
HashValueFunc hash; /* hash function */
//哈希鍵比較函數(shù)
HashCompareFunc match; /* key comparison function */
//哈希鍵拷貝函數(shù)
HashCopyFunc keycopy; /* key copying function */
//內存分配器
HashAllocFunc alloc; /* memory allocator */
//內存上下文
MemoryContext hcxt; /* memory context if default allocator used */
//表名(用于錯誤信息)
char *tabname; /* table name (for error messages) */
//如在共享內存中,則為T
bool isshared; /* true if table is in shared memory */
//如為T,則固定大小不能擴展
bool isfixed; /* if true, don't enlarge */
/* freezing a shared table isn't allowed, so we can keep state here */
//不允許凍結共享表,因此這里會保存相關狀態(tài)
bool frozen; /* true = no more inserts allowed */
/* We keep local copies of these fixed values to reduce contention */
//保存這些固定值的本地拷貝,以減少沖突
//哈希鍵長度(以字節(jié)為單位)
Size keysize; /* hash key length in bytes */
//段大小,必須為2的冪
long ssize; /* segment size --- must be power of 2 */
//段偏移,ssize的對數(shù)
int sshift; /* segment shift = log2(ssize) */
};
/*
* Header structure for a hash table --- contains all changeable info
* 哈希表的頭部結構 -- 存儲所有可變信息
*
* In a shared-memory hash table, the HASHHDR is in shared memory, while
* each backend has a local HTAB struct. For a non-shared table, there isn't
* any functional difference between HASHHDR and HTAB, but we separate them
* anyway to share code between shared and non-shared tables.
* 在共享內存哈希表中,HASHHDR位于共享內存中,每一個后臺進程都有一個本地HTAB結構.
* 對于非共享哈希表,HASHHDR和HTAB沒有任何功能性的不同,
* 但無論如何,我們還是把它們區(qū)分為共享和非共享表.
*/
struct HASHHDR
{
/*
* The freelist can become a point of contention in high-concurrency hash
* tables, so we use an array of freelists, each with its own mutex and
* nentries count, instead of just a single one. Although the freelists
* normally operate independently, we will scavenge entries from freelists
* other than a hashcode's default freelist when necessary.
* 在高并發(fā)的哈希表中,空閑鏈表會成為競爭熱點,因此我們使用空閑鏈表數(shù)組,
* 數(shù)組中的每一個元素都有自己的mutex和條目統(tǒng)計,而不是使用一個.
*
* If the hash table is not partitioned, only freeList[0] is used and its
* spinlock is not used at all; callers' locking is assumed sufficient.
* 如果哈希表沒有分區(qū),那么只有freelist[0]元素是有用的,自旋鎖沒有任何用處;
* 調用者鎖定被認為已足夠OK.
*/
FreeListData freeList[NUM_FREELISTS];
/* These fields can change, but not in a partitioned table */
//這些域字段可以改變,但不適用于分區(qū)表
/* Also, dsize can't change in a shared table, even if unpartitioned */
//同時,就算是非分區(qū)表,共享表的dsize也不能改變
//目錄大小
long dsize; /* directory size */
//已分配的段大小(<= dbsize)
long nsegs; /* number of allocated segments (<= dsize) */
//正在使用的最大桶ID
uint32 max_bucket; /* ID of maximum bucket in use */
//進入整個哈希表的模掩碼
uint32 high_mask; /* mask to modulo into entire table */
//進入低于半個哈希表的模掩碼
uint32 low_mask; /* mask to modulo into lower half of table */
/* These fields are fixed at hashtable creation */
//下面這些字段在哈希表創(chuàng)建時已固定
//哈希鍵大小(以字節(jié)為單位)
Size keysize; /* hash key length in bytes */
//所有用戶元素大小(以字節(jié)為單位)
Size entrysize; /* total user element size in bytes */
//分區(qū)個數(shù)(2的冪),或者為0
long num_partitions; /* # partitions (must be power of 2), or 0 */
//目標的填充因子
long ffactor; /* target fill factor */
//如目錄是固定大小,則該值為dsize的上限值
long max_dsize; /* 'dsize' limit if directory is fixed size */
//段大小,必須是2的冪
long ssize; /* segment size --- must be power of 2 */
//端偏移,ssize的對數(shù)
int sshift; /* segment shift = log2(ssize) */
//一次性分配的條目個數(shù)
int nelem_alloc; /* number of entries to allocate at once */
#ifdef HASH_STATISTICS
/*
* Count statistics here. NB: stats code doesn't bother with mutex, so
* counts could be corrupted a bit in a partitioned table.
* 統(tǒng)計信息.
* 注意:統(tǒng)計相關的代碼不會影響mutex,因此對于分區(qū)表,統(tǒng)計可能有一點點問題
*/
long accesses;
long collisions;
#endif
};
/*
* Per-freelist data.
* 空閑鏈表數(shù)據(jù).
*
* In a partitioned hash table, each freelist is associated with a specific
* set of hashcodes, as determined by the FREELIST_IDX() macro below.
* nentries tracks the number of live hashtable entries having those hashcodes
* (NOT the number of entries in the freelist, as you might expect).
* 在一個分區(qū)哈希表中,每一個空閑鏈表與特定的hashcodes集合相關,通過下面的FREELIST_IDX()宏進行定義.
* nentries跟蹤有這些hashcodes的仍存活的hashtable條目個數(shù).
* (注意不要搞錯,不是空閑的條目個數(shù))
*
* The coverage of a freelist might be more or less than one partition, so it
* needs its own lock rather than relying on caller locking. Relying on that
* wouldn't work even if the coverage was the same, because of the occasional
* need to "borrow" entries from another freelist; see get_hash_entry().
* 空閑鏈表的覆蓋范圍可能比一個分區(qū)多或少,因此需要自己的鎖而不能僅僅依賴調用者的鎖.
* 依賴調用者鎖在覆蓋面一樣的情況下也不會起效,因為偶爾需要從另一個自由列表“借用”條目,詳細參見get_hash_entry()
*
* Using an array of FreeListData instead of separate arrays of mutexes,
* nentries and freeLists helps to reduce sharing of cache lines between
* different mutexes.
* 使用FreeListData數(shù)組而不是一個獨立的mutexes,nentries和freelists數(shù)組有助于減少不同mutexes之間的緩存線共享.
*/
typedef struct
{
//該空閑鏈表的自旋鎖
slock_t mutex; /* spinlock for this freelist */
//相關桶中的條目個數(shù)
long nentries; /* number of entries in associated buckets */
//空閑元素鏈
HASHELEMENT *freeList; /* chain of free elements */
} FreeListData;
/*
* HASHELEMENT is the private part of a hashtable entry. The caller's data
* follows the HASHELEMENT structure (on a MAXALIGN'd boundary). The hash key
* is expected to be at the start of the caller's hash entry data structure.
* HASHELEMENT是哈希表條目的私有部分.
* 調用者的數(shù)據(jù)按照HASHELEMENT結構組織(位于MAXALIGN的邊界).
* 哈希鍵應位于調用者hash條目數(shù)據(jù)結構的開始位置.
*/
typedef struct HASHELEMENT
{
//鏈接到相同桶中的下一個條目
struct HASHELEMENT *link; /* link to next entry in same bucket */
//該條目的哈希函數(shù)結果
uint32 hashvalue; /* hash function result for this entry */
} HASHELEMENT;
/* Hash table header struct is an opaque type known only within dynahash.c */
//哈希表頭部結構,非透明類型,用于dynahash.c
typedef struct HASHHDR HASHHDR;
/* Hash table control struct is an opaque type known only within dynahash.c */
//哈希表控制結構,非透明類型,用于dynahash.c
typedef struct HTAB HTAB;
/* Parameter data structure for hash_create */
//hash_create使用的參數(shù)數(shù)據(jù)結構
/* Only those fields indicated by hash_flags need be set */
//根據(jù)hash_flags標記設置相應的字段
typedef struct HASHCTL
{
//分區(qū)個數(shù)(必須是2的冪)
long num_partitions; /* # partitions (must be power of 2) */
//段大小
long ssize; /* segment size */
//初始化目錄大小
long dsize; /* (initial) directory size */
//dsize上限
long max_dsize; /* limit to dsize if dir size is limited */
//填充因子
long ffactor; /* fill factor */
//哈希鍵大小(字節(jié)為單位)
Size keysize; /* hash key length in bytes */
//參見上述數(shù)據(jù)結構注釋
Size entrysize; /* total user element size in bytes */
//
HashValueFunc hash; /* hash function */
HashCompareFunc match; /* key comparison function */
HashCopyFunc keycopy; /* key copying function */
HashAllocFunc alloc; /* memory allocator */
MemoryContext hcxt; /* memory context to use for allocations */
//共享內存中的哈希頭部結構地址
HASHHDR *hctl; /* location of header in shared mem */
} HASHCTL;
/* A hash bucket is a linked list of HASHELEMENTs */
//哈希桶是HASHELEMENTs鏈表
typedef HASHELEMENT *HASHBUCKET;
/* A hash segment is an array of bucket headers */
//hash segment是桶數(shù)組
typedef HASHBUCKET *HASHSEGMENT;
/*
* Hash functions must have this signature.
* Hash函數(shù)必須有它自己的標識
*/
typedef uint32 (*HashValueFunc) (const void *key, Size keysize);
/*
* Key comparison functions must have this signature. Comparison functions
* return zero for match, nonzero for no match. (The comparison function
* definition is designed to allow memcmp() and strncmp() to be used directly
* as key comparison functions.)
* 哈希鍵對比函數(shù)必須有自己的標識.
* 如匹配則對比函數(shù)返回0,不匹配返回非0.
* (對比函數(shù)定義被設計為允許在對比鍵值時可直接使用memcmp()和strncmp())
*/
typedef int (*HashCompareFunc) (const void *key1, const void *key2,
Size keysize);
/*
* Key copying functions must have this signature. The return value is not
* used. (The definition is set up to allow memcpy() and strlcpy() to be
* used directly.)
* 鍵拷貝函數(shù)必須有自己的標識.
* 返回值無用.
*/
typedef void *(*HashCopyFunc) (void *dest, const void *src, Size keysize);
/*
* Space allocation function for a hashtable --- designed to match malloc().
* Note: there is no free function API; can't destroy a hashtable unless you
* use the default allocator.
* 哈希表的恐懼分配函數(shù) -- 被設計為與malloc()函數(shù)匹配.
* 注意:這里沒有釋放函數(shù)API;不能銷毀哈希表,除非使用默認的分配器.
*/
typedef void *(*HashAllocFunc) (Size request);BufferLookupEnt
/* entry for buffer lookup hashtable */
//檢索hash表的條目
typedef struct
{
//磁盤page的tag
BufferTag key; /* Tag of a disk page */
//相關聯(lián)的buffer ID
int id; /* Associated buffer ID */
} BufferLookupEnt;BufTableInsert源碼很簡單,重點是需要理解HTAB數(shù)據(jù)結構,即全局變量SharedBufHash的數(shù)據(jù)結構.
/*
* BufTableInsert
* Insert a hashtable entry for given tag and buffer ID,
* unless an entry already exists for that tag
* BufTableInsert
* 給定tag和buffer ID,插入到哈希表中,如該tag相應的條目已存在,則不處理.
*
* Returns -1 on successful insertion. If a conflicting entry exists
* already, returns the buffer ID in that entry.
* 如成功插入,則返回-1.如沖突的條目已存在,則返回條目的buffer ID.
*
* Caller must hold exclusive lock on BufMappingLock for tag's partition
* 調用者必須持有tag分區(qū)BufMappingLock獨占鎖.
*/
int
BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id)
{
BufferLookupEnt *result;
bool found;
Assert(buf_id >= 0); /* -1 is reserved for not-in-table */
Assert(tagPtr->blockNum != P_NEW); /* invalid tag */
//static HTAB *SharedBufHash;
result = (BufferLookupEnt *)
hash_search_with_hash_value(SharedBufHash,
(void *) tagPtr,
hashcode,
HASH_ENTER,
&found);
if (found) /* found something already in the table */
return result->id;
result->id = buf_id;
return -1;
}測試腳本,查詢數(shù)據(jù)表:
10:01:54 (xdb@[local]:5432)testdb=# select * from t1 limit 10;
啟動gdb,設置斷點
(gdb) (gdb) b BufTableInsert Breakpoint 1 at 0x875c92: file buf_table.c, line 125. (gdb) c Continuing. Breakpoint 1, BufTableInsert (tagPtr=0x7fff0cba0ef0, hashcode=1398580903, buf_id=101) at buf_table.c:125 125 Assert(buf_id >= 0); /* -1 is reserved for not-in-table */ (gdb)
輸入?yún)?shù)
tagPtr-BufferTag結構體
hashcode=1398580903,
buf_id=101
(gdb) p *tagPtr
$1 = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}調用hash_search_with_hash_value,重點考察SharedBufHash(HTAB指針)
(gdb) n 129 hash_search_with_hash_value(SharedBufHash,
SharedBufHash
(gdb) p *SharedBufHash
$2 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74 <tag_hash>, match = 0x4791a0 <memcmp@plt>,
keycopy = 0x479690 <memcpy@plt>, alloc = 0x89250b <ShmemAllocNoError>, hcxt = 0x0,
tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20,
ssize = 256, sshift = 8}
(gdb)SharedBufHash->hctl,HASHHDR結構體
freeList是一個數(shù)組
num_partitions是分區(qū)個數(shù),默認為128
(gdb) p *SharedBufHash->hctl
$3 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2,
freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000',
nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5,
freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891a5e00}, {mutex = 0 '\000',
nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5,
freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000',
nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3,
freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000',
nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4,
freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000',
nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4,
freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000',
nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3,
freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071,
keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8,
nelem_alloc = 51}
(gdb)
(gdb) p *SharedBufHash->hctl->freeList[0].freeList
$4 = {link = 0x7f54891196d8, hashvalue = 0}
(gdb) p *SharedBufHash->hctl->freeList[0].freeList.link
$5 = {link = 0x7f54891196b0, hashvalue = 0}
(gdb)SharedBufHash->dir,段開始目錄
(gdb) p *SharedBufHash->dir $6 = (HASHSEGMENT) 0x7f5489005700 (gdb) p **SharedBufHash->dir $7 = (HASHBUCKET) 0x0 (gdb) p *SharedBufHash->dir[0] $8 = (HASHBUCKET) 0x0 (gdb) p *SharedBufHash->dir[1] $9 = (HASHBUCKET) 0x0 (gdb)
哈希函數(shù)為tag_hash
哈希鍵比較函數(shù)是memcmp
@plt
哈希鍵拷貝函數(shù)是memcpy
@plt
內存分配器是ShmemAllocNoError
內存上下文為NULL
表名是Shared Buffer Lookup Table
共享內存(isshared=T)
非固定/非凍結/哈希鍵長度為20B/段大小為256/段偏移為8
執(zhí)行hash_search_with_hash_value,查看相關信息
(gdb) n
128 result = (BufferLookupEnt *)
(gdb)
135 if (found) /* found something already in the table */
(gdb) p *SharedBufHash
$10 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74 <tag_hash>, match = 0x4791a0 <memcmp@plt>,
keycopy = 0x479690 <memcpy@plt>, alloc = 0x89250b <ShmemAllocNoError>, hcxt = 0x0,
tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20,
ssize = 256, sshift = 8}
(gdb) p *SharedBufHash->hctl
$11 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2,
freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000',
nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5,
freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891a5dd8}, {mutex = 0 '\000',
nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5,
freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000',
nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3,
freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000',
nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4,
freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000',
nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, {
mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4,
freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000',
nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, {
mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3,
freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071,
keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8,
nelem_alloc = 51}
(gdb) p **SharedBufHash->dir
$12 = (HASHBUCKET) 0x0
(gdb) p *SharedBufHash->dir
$13 = (HASHSEGMENT) 0x7f5489005700
(gdb) p result
$14 = (BufferLookupEnt *) 0x7f54891a5e10
(gdb) p *result
$15 = {key = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}, id = 0}
(gdb) p found
$16 = false完成調用,返回
(gdb) n 138 result->id = buf_id; (gdb) 140 return -1; (gdb) 141 } (gdb) BufferAlloc (smgr=0x204f430, relpersistence=112 'p', forkNum=MAIN_FORKNUM, blockNum=0, strategy=0x0, foundPtr=0x7fff0cba0fa3) at bufmgr.c:1216 1216 if (buf_id >= 0) (gdb)
“PostgreSQL中BufTableInsert函數(shù)有什么作用”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關的知識可以關注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質量的實用文章!
名稱欄目:PostgreSQL中BufTableInsert函數(shù)有什么作用
鏈接分享:http://www.chinadenli.net/article8/gpdjop.html
成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供營銷型網(wǎng)站建設、商城網(wǎng)站、網(wǎng)站維護、定制網(wǎng)站、品牌網(wǎng)站制作、App設計
聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)