在Java項(xiàng)目中實(shí)現(xiàn)多線程并發(fā)編程的方法?很多新手對(duì)此不是很清楚,為了幫助大家解決這個(gè)難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來學(xué)習(xí)下,希望你能有所收獲。

成都創(chuàng)新互聯(lián)公司始終堅(jiān)持【策劃先行,效果至上】的經(jīng)營理念,通過多達(dá)10余年累計(jì)超上千家客戶的網(wǎng)站建設(shè)總結(jié)了一套系統(tǒng)有效的全網(wǎng)營銷推廣解決方案,現(xiàn)已廣泛運(yùn)用于各行各業(yè)的客戶,其中包括:成都iso認(rèn)證等企業(yè),備受客戶表揚(yáng)。
Java 中的鎖通常分為兩種:
通過關(guān)鍵字 synchronized 獲取的鎖,我們稱為同步鎖,上一篇有介紹到:Java 多線程并發(fā)編程 Synchronized 關(guān)鍵字。
java.util.concurrent(JUC)包里的鎖,如通過繼承接口 Lock 而實(shí)現(xiàn)的 ReentrantLock(互斥鎖),繼承 ReadWriteLock 實(shí)現(xiàn)的 ReentrantReadWriteLock(讀寫鎖)。
本篇主要介紹 ReentrantLock(互斥鎖)。
ReentrantLock(互斥鎖)
ReentrantLock 互斥鎖,在同一時(shí)間只能被一個(gè)線程所占有,在被持有后并未釋放之前,其他線程若想獲得該鎖只能等待或放棄。
ReentrantLock 互斥鎖是可重入鎖,即某一線程可多次獲得該鎖。
公平鎖 and 非公平鎖
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}由 ReentrantLock 的構(gòu)造函數(shù)可見,在實(shí)例化 ReentrantLock 的時(shí)候我們可以選擇實(shí)例化一個(gè)公平鎖或非公平鎖,而默認(rèn)會(huì)構(gòu)造一個(gè)非公平鎖。
公平鎖與非公平鎖區(qū)別在于競爭鎖時(shí)的有序與否。公平鎖可確保有序性(FIFO 隊(duì)列),非公平鎖不能確保有序性(即使也有 FIFO 隊(duì)列)。
然而,公平是要付出代價(jià)的,公平鎖比非公平鎖要耗性能,所以在非必須確保公平的條件下,一般使用非公平鎖可提高吞吐率。所以 ReentrantLock 默認(rèn)的構(gòu)造函數(shù)也是“不公平”的。
一般使用
DEMO1:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
mReentrantLock.lock();
try {
for (int i = 0; i < 6; i++) {
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
private static class MyThread extends Thread {
private Counter mCounter;
public MyThread(Counter counter) {
mCounter = counter;
}
@Override
public void run() {
super.run();
mCounter.count();
}
}
public static void main(String[] var0) {
Counter counter = new Counter();
// 注:myThread1 和 myThread2 是調(diào)用同一個(gè)對(duì)象 counter
MyThread myThread1 = new MyThread(counter);
MyThread myThread2 = new MyThread(counter);
myThread1.start();
myThread2.start();
}
}DEMO1 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1, i = 0 Thread-1, i = 1 Thread-1, i = 2 Thread-1, i = 3 Thread-1, i = 4 Thread-1, i = 5
DEMO1 僅使用了 ReentrantLock 的 lock 和 unlock 來提現(xiàn)一般鎖的特性,確保線程的有序執(zhí)行。此種場景 synchronized 也適用。
鎖的作用域
DEMO2:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模擬耗時(shí),突出線程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
for (int i = 0; i < 6; i++) {
// 模擬耗時(shí),突出線程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}DEMO2 輸出:
Thread-0, i = 0 Thread-1 doOtherThing, i = 0 Thread-0, i = 1 Thread-1 doOtherThing, i = 1 Thread-0, i = 2 Thread-1 doOtherThing, i = 2 Thread-0, i = 3 Thread-1 doOtherThing, i = 3 Thread-0, i = 4 Thread-1 doOtherThing, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 5
DEMO3:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模擬耗時(shí),突出線程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
mReentrantLock.lock();
try{
for (int i = 0; i < 6; i++) {
// 模擬耗時(shí),突出線程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}finally {
mReentrantLock.unlock();
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}DEMO3 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 0 Thread-1 doOtherThing, i = 1 Thread-1 doOtherThing, i = 2 Thread-1 doOtherThing, i = 3 Thread-1 doOtherThing, i = 4 Thread-1 doOtherThing, i = 5
結(jié)合 DEMO2 和 DEMO3 輸出可見,鎖的作用域在于 mReentrantLock,因?yàn)樗鶃碜杂?mReentrantLock。
可終止等待
DEMO4:
public class Test {
static final int TIMEOUT = 300;
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
try{
//lock() 不可中斷
mReentrantLock.lock();
// 模擬耗時(shí),突出線程是否阻塞
for (int i = 0; i < 6; i++) {
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
public void doOtherThing(){
try{
//lockInterruptibly() 可中斷,若線程沒有中斷,則獲取鎖
mReentrantLock.lockInterruptibly();
for (int i = 0; i < 6; i++) {
// 模擬耗時(shí),突出線程是否阻塞
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + " 中斷 ");
}finally {
// 若當(dāng)前線程持有鎖,則釋放
if(mReentrantLock.isHeldByCurrentThread()){
mReentrantLock.unlock();
}
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
});
thread2.start();
long start = System.currentTimeMillis();
while (true){
if (System.currentTimeMillis() - start > TIMEOUT) {
// 若線程還在運(yùn)行,嘗試中斷
if(thread2.isAlive()){
System.out.println(" 不等了,嘗試中斷 ");
thread2.interrupt();
}
break;
}
}
}
}DEMO4 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 不等了,嘗試中斷 Thread-1 中斷 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5
線程 thread2 等待 300ms 后 timeout,中斷等待成功。
若把 TIMEOUT 改成 3000ms,輸出結(jié)果:(正常運(yùn)行)
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 0 Thread-1 doOtherThing, i = 1 Thread-1 doOtherThing, i = 2 Thread-1 doOtherThing, i = 3 Thread-1 doOtherThing, i = 4 Thread-1 doOtherThing, i = 5
定時(shí)鎖
DEMO5:
public class Test {
static final int TIMEOUT = 3000;
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
try{
//lock() 不可中斷
mReentrantLock.lock();
// 模擬耗時(shí),突出線程是否阻塞
for (int i = 0; i < 6; i++) {
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必須在 finally 釋放鎖
mReentrantLock.unlock();
}
}
public void doOtherThing(){
try{
//tryLock(long timeout, TimeUnit unit) 嘗試獲得鎖
boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
if(isLock){
for (int i = 0; i < 6; i++) {
// 模擬耗時(shí),突出線程是否阻塞
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}else{
System.out.println(Thread.currentThread().getName() + " timeout");
}
} catch (InterruptedException e) {
System.out.println(Thread.currentThread().getName() + " 中斷 ");
}finally {
// 若當(dāng)前線程持有鎖,則釋放
if(mReentrantLock.isHeldByCurrentThread()){
mReentrantLock.unlock();
}
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
Thread thread2 = new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
});
thread2.start();
}
}DEMO5 輸出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-1 isLock:false Thread-1 timeout Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5
tryLock() 嘗試獲得鎖,tryLock(long timeout, TimeUnit unit) 在給定的 timeout 時(shí)間內(nèi)嘗試獲得鎖,若超時(shí),則不帶鎖往下走,所以必須加以判斷。
ReentrantLock or synchronized
ReentrantLock 、synchronized 之間如何選擇?
ReentrantLock 在性能上 比 synchronized 更勝一籌。
ReentrantLock 需格外小心,因?yàn)樾枰@式釋放鎖,lock() 后記得 unlock(),而且必須在 finally 里面,否則容易造成死鎖。
synchronized 隱式自動(dòng)釋放鎖,使用方便。
ReentrantLock 擴(kuò)展性好,可中斷鎖,定時(shí)鎖,自由控制。
synchronized 一但進(jìn)入阻塞等待,則無法中斷等待。
看完上述內(nèi)容是否對(duì)您有幫助呢?如果還想對(duì)相關(guān)知識(shí)有進(jìn)一步的了解或閱讀更多相關(guān)文章,請(qǐng)關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對(duì)創(chuàng)新互聯(lián)的支持。
網(wǎng)頁題目:在Java項(xiàng)目中實(shí)現(xiàn)多線程并發(fā)編程的方法
標(biāo)題鏈接:http://www.chinadenli.net/article6/pieoog.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供響應(yīng)式網(wǎng)站、企業(yè)網(wǎng)站制作、品牌網(wǎng)站設(shè)計(jì)、ChatGPT、微信小程序、網(wǎng)站策劃
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)