簡(jiǎn)介

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)技術(shù)中極具代表的網(wǎng)絡(luò)結(jié)構(gòu)之一,在圖像處理領(lǐng)域取得了很大的成功,在國(guó)際標(biāo)準(zhǔn)的ImageNet數(shù)據(jù)集上,許多成功的模型都是基于CNN的。
卷積神經(jīng)網(wǎng)絡(luò)CNN的結(jié)構(gòu)一般包含這幾個(gè)層:
PyTorch實(shí)戰(zhàn)
本文選用上篇的數(shù)據(jù)集MNIST手寫(xiě)數(shù)字識(shí)別實(shí)踐CNN。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
batch_size = 64
# MNIST Dataset
train_dataset = datasets.MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 輸入1通道,輸出10通道,kernel 5*5
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.mp = nn.MaxPool2d(2)
# fully connect
self.fc = nn.Linear(320, 10)
def forward(self, x):
# in_size = 64
in_size = x.size(0) # one batch
# x: 64*10*12*12
x = F.relu(self.mp(self.conv1(x)))
# x: 64*20*4*4
x = F.relu(self.mp(self.conv2(x)))
# x: 64*320
x = x.view(in_size, -1) # flatten the tensor
# x: 64*10
x = self.fc(x)
return F.log_softmax(x)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 200 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test():
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).data[0]
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 10):
train(epoch)
test()
分享標(biāo)題:PyTorchCNN實(shí)戰(zhàn)之MNIST手寫(xiě)數(shù)字識(shí)別示例-創(chuàng)新互聯(lián)
文章鏈接:http://www.chinadenli.net/article6/dgecig.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App開(kāi)發(fā)、網(wǎng)站導(dǎo)航、企業(yè)網(wǎng)站制作、網(wǎng)站改版、定制開(kāi)發(fā)、網(wǎng)站收錄
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容