本篇文章主要基于python語(yǔ)言和OpenCV庫(kù)(cv2)進(jìn)行車(chē)牌區(qū)域識(shí)別和字符分割,開(kāi)篇之前針對(duì)在python中安裝opencv的環(huán)境這里不做介紹,可以自行安裝配置!
車(chē)牌號(hào)檢測(cè)需要大致分為四個(gè)部分:
1.車(chē)輛圖像獲取
2.車(chē)牌定位、
3.車(chē)牌字符分割
4.車(chē)牌字符識(shí)別
具體介紹
車(chē)牌定位需要用到的是圖片二值化為黑白后進(jìn)canny邊緣檢測(cè)后多次進(jìn)行開(kāi)運(yùn)算與閉運(yùn)算用于消除小塊的區(qū)域,保留大塊的區(qū)域,后用cv2.rectangle選取矩形框,從而定位車(chē)牌位置
車(chē)牌字符的分割前需要準(zhǔn)備的是只保留車(chē)牌部分,將其他部分均變?yōu)楹谏尘啊_@里我采用cv2.grabCut方法,可將圖像分割成前景與背景。分割完成后,再經(jīng)過(guò)二值化為黑白圖后即可進(jìn)行字符分割。由于圖像中只有黑色和白色像素,因此我們需要通過(guò)圖像的白色像素和黑色像素來(lái)分割開(kāi)字符。即分別通過(guò)判斷每一行每一列的黑色白色像素值的位置,來(lái)定位出字符。
具體步驟如下:
1.灰度轉(zhuǎn)換:將彩色圖片轉(zhuǎn)換為灰度圖像,常見(jiàn)的R=G=B=像素平均值。
2.高斯平滑和中值濾波:去除噪聲。
3.Sobel算子:提取圖像邊緣輪廓,X方向和Y方向平方和開(kāi)跟。
4.二值化處理:圖像轉(zhuǎn)換為黑白兩色,通常像素大于127設(shè)置為255,小于設(shè)置為0。
5.膨脹和細(xì)化:放大圖像輪廓,轉(zhuǎn)換為一個(gè)個(gè)區(qū)域,這些區(qū)域內(nèi)包含車(chē)牌。
6.通過(guò)算法選擇合適的車(chē)牌位置,通常將較小的區(qū)域過(guò)濾掉或?qū)ふ宜{(lán)色底的區(qū)域。
7.標(biāo)注車(chē)牌位置
8.圖像切割和識(shí)別
通過(guò)代碼實(shí)現(xiàn):
# -*- coding: utf-8 -*- """ @email:cuiran2001@163.com @author: cuiran """ import cv2 import numpy as np from PIL import Image import os.path from skimage import io,data def stretch(img): ''' 圖像拉伸函數(shù) ''' maxi=float(img.max()) mini=float(img.min()) for i in range(img.shape[0]): for j in range(img.shape[1]): img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini)) return img def dobinaryzation(img): ''' 二值化處理函數(shù) ''' maxi=float(img.max()) mini=float(img.min()) x=maxi-((maxi-mini)/2) #二值化,返回閾值ret 和 二值化操作后的圖像thresh ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY) #返回二值化后的黑白圖像 return thresh def find_rectangle(contour): ''' 尋找矩形輪廓 ''' y,x=[],[] for p in contour: y.append(p[0][0]) x.append(p[0][1]) return [min(y),min(x),max(y),max(x)] def locate_license(img,afterimg): ''' 定位車(chē)牌號(hào) ''' img,contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #找出大的三個(gè)區(qū)域 block=[] for c in contours: #找出輪廓的左上點(diǎn)和右下點(diǎn),由此計(jì)算它的面積和長(zhǎng)度比 r=find_rectangle(c) a=(r[2]-r[0])*(r[3]-r[1]) #面積 s=(r[2]-r[0])*(r[3]-r[1]) #長(zhǎng)度比 block.append([r,a,s]) #選出面積大的3個(gè)區(qū)域 block=sorted(block,key=lambda b: b[1])[-3:] #使用顏色識(shí)別判斷找出最像車(chē)牌的區(qū)域 maxweight,maxindex=0,-1 for i in range(len(block)): b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]] #BGR轉(zhuǎn)HSV hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV) #藍(lán)色車(chē)牌的范圍 lower=np.array([100,50,50]) upper=np.array([140,255,255]) #根據(jù)閾值構(gòu)建掩膜 mask=cv2.inRange(hsv,lower,upper) #統(tǒng)計(jì)權(quán)值 w1=0 for m in mask: w1+=m/255 w2=0 for n in w1: w2+=n #選出大權(quán)值的區(qū)域 if w2>maxweight: maxindex=i maxweight=w2 return block[maxindex][0] def find_license(img): ''' 預(yù)處理函數(shù) ''' m=400*img.shape[0]/img.shape[1] #壓縮圖像 img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC) #BGR轉(zhuǎn)換為灰度圖像 gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #灰度拉伸 stretchedimg=stretch(gray_img) '''進(jìn)行開(kāi)運(yùn)算,用來(lái)去除噪聲''' r=16 h=w=r*2+1 kernel=np.zeros((h,w),np.uint8) cv2.circle(kernel,(r,r),r,1,-1) #開(kāi)運(yùn)算 openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel) #獲取差分圖,兩幅圖像做差 cv2.absdiff('圖像1','圖像2') strtimg=cv2.absdiff(stretchedimg,openingimg) #圖像二值化 binaryimg=dobinaryzation(strtimg) #canny邊緣檢測(cè) canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1]) '''消除小的區(qū)域,保留大塊的區(qū)域,從而定位車(chē)牌''' #進(jìn)行閉運(yùn)算 kernel=np.ones((5,19),np.uint8) closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel) #進(jìn)行開(kāi)運(yùn)算 openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel) #再次進(jìn)行開(kāi)運(yùn)算 kernel=np.ones((11,5),np.uint8) openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel) #消除小區(qū)域,定位車(chē)牌位置 rect=locate_license(openingimg,img) return rect,img def cut_license(afterimg,rect): ''' 圖像分割函數(shù) ''' #轉(zhuǎn)換為寬度和高度 rect[2]=rect[2]-rect[0] rect[3]=rect[3]-rect[1] rect_copy=tuple(rect.copy()) rect=[0,0,0,0] #創(chuàng)建掩膜 mask=np.zeros(afterimg.shape[:2],np.uint8) #創(chuàng)建背景模型 大小只能為13*5,行數(shù)只能為1,單通道浮點(diǎn)型 bgdModel=np.zeros((1,65),np.float64) #創(chuàng)建前景模型 fgdModel=np.zeros((1,65),np.float64) #分割圖像 cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT) mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8') img_show=afterimg*mask2[:,:,np.newaxis] return img_show def deal_license(licenseimg): ''' 車(chē)牌圖片二值化 ''' #車(chē)牌變?yōu)榛叶葓D像 gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY) #均值濾波 去除噪聲 kernel=np.ones((3,3),np.float32)/9 gray_img=cv2.filter2D(gray_img,-1,kernel) #二值化處理 ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY) return thresh def find_end(start,arg,black,white,width,black_max,white_max): end=start+1 for m in range(start+1,width-1): if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max): end=m break return end if __name__=='__main__': img=cv2.imread('test_images/car001.jpg',cv2.IMREAD_COLOR) #預(yù)處理圖像 rect,afterimg=find_license(img) #框出車(chē)牌號(hào) cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2) cv2.imshow('afterimg',afterimg) #分割車(chē)牌與背景 cutimg=cut_license(afterimg,rect) cv2.imshow('cutimg',cutimg) #二值化生成黑白圖 thresh=deal_license(cutimg) cv2.imshow('thresh',thresh) cv2.waitKey(0) #分割字符 ''' 判斷底色和字色 ''' #記錄黑白像素總和 white=[] black=[] height=thresh.shape[0] #263 width=thresh.shape[1] #400 #print('height',height) #print('width',width) white_max=0 black_max=0 #計(jì)算每一列的黑白像素總和 for i in range(width): line_white=0 line_black=0 for j in range(height): if thresh[j][i]==255: line_white+=1 if thresh[j][i]==0: line_black+=1 white_max=max(white_max,line_white) black_max=max(black_max,line_black) white.append(line_white) black.append(line_black) print('white',white) print('black',black) #arg為true表示黑底白字,F(xiàn)alse為白底黑字 arg=True if black_max<white_max: arg=False n=1 start=1 end=2 s_width=28 s_height=28 while n<width-2: n+=1 #判斷是白底黑字還是黑底白字 0.05參數(shù)對(duì)應(yīng)上面的0.95 可作調(diào)整 if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max): start=n end=find_end(start,arg,black,white,width,black_max,white_max) n=end if end-start>5: cj=thresh[1:height,start:end] # new_image = cj.resize((s_width,s_height),Image.BILINEAR) # cj=cj.reshape(28, 28) print("result/%s.jpg" % (n)) #保存分割的圖片 by cayden # cj.save("result/%s.jpg" % (n)) infile="result/%s.jpg" % (n) io.imsave(infile,cj) # im = Image.open(infile) # out=im.resize((s_width,s_height),Image.BILINEAR) # out.save(infile) cv2.imshow('cutlicense',cj) cv2.waitKey(0) cv2.waitKey(0) cv2.destroyAllWindows()
網(wǎng)站標(biāo)題:OpenCV+Python識(shí)別車(chē)牌和字符分割的實(shí)現(xiàn)-創(chuàng)新互聯(lián)
URL標(biāo)題:http://www.chinadenli.net/article46/igheg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供微信公眾號(hào)、網(wǎng)站營(yíng)銷(xiāo)、定制開(kāi)發(fā)、Google、網(wǎng)站收錄、企業(yè)網(wǎng)站制作
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀(guān)點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話(huà):028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容