本篇文章給大家分享的是有關(guān)怎么在Java項目中實現(xiàn)一個矩陣乘法,小編覺得挺實用的,因此分享給大家學(xué)習(xí),希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

C[1][1] = A[1][0] * B[0][1] + A[1][1] * B[1][1] + A[1][2] * B[2][1] + A[1][3] * B[3][1] + A[1][4] * B[4][1]
??而用Java實現(xiàn)該過程的傳統(tǒng)方法就是按照該規(guī)則實現(xiàn)一個三重循環(huán),把各項乘積累加:
public int[][] multiply(int[][] mat1, int[][] mat2){
int m = mat1.length, n = mat2[0].length;
int[][] mat = new int[m][n];
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
for(int k = 0; k < mat1[0].length; k++){
mat[i][j] += mat1[i][k] * mat2[k][j];
}
}
}
return mat;
}??可以看出該方法的時間復(fù)雜度為O(n3),當(dāng)矩陣維數(shù)比較大的時候程序就很容易超時。
??Strassen算法是由Volker Strassen在1966年提出的第一個時間復(fù)雜度低于O(n³)的矩陣乘法算法,其主要思想是通過分治來實現(xiàn)矩陣乘法的快速運算,計算過程如圖所示:

將一次矩陣乘法拆分成多個乘法與加法的結(jié)合
??為什么這個方法會更快呢,我們知道,按照傳統(tǒng)的矩陣乘法:
C11 = A11 * B11 + A12 * B21
C12 = A11 * B12 + A12 * B22
C21 = A21 * B11 + A22 * B21
C22 = A21 * B12 + A22 * B22
??我們需要8次矩陣乘法和4次矩陣加法,正是這8次乘法最耗時;而Strassen方法只需要7次矩陣乘法,盡管代價是矩陣加法次數(shù)變?yōu)?8次,但是基于數(shù)量級考慮,18次加法仍然快于1次乘法。
??當(dāng)然,Strassen算法的代碼實現(xiàn)也比傳統(tǒng)算法復(fù)雜許多,這里附上另一個大神寫的java實現(xiàn)(原文鏈接:https://www.jb51.net/article/205375.htm):
public class Matrix {
private final Matrix[] _matrixArray;
private final int n;
private int element;
public Matrix(int n) {
this.n = n;
if (n != 1) {
this._matrixArray = new Matrix[4];
for (int i = 0; i < 4; i++) {
this._matrixArray[i] = new Matrix(n / 2);
}
} else {
this._matrixArray = null;
}
}
private Matrix(int n, boolean needInit) {
this.n = n;
if (n != 1) {
this._matrixArray = new Matrix[4];
} else {
this._matrixArray = null;
}
}
public void set(int i, int j, int a) {
if (n == 1) {
element = a;
} else {
int size = n / 2;
this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a);
}
}
public Matrix multi(Matrix m) {
Matrix result = null;
if (n == 1) {
result = new Matrix(1);
result.set(0, 0, (element * m.element));
} else {
result = new Matrix(n, false);
result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m));
result._matrixArray[1] = P1(m).add(P2(m));
result._matrixArray[2] = P3(m).add(P4(m));
result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m));
}
return result;
}
public Matrix add(Matrix m) {
Matrix result = null;
if (n == 1) {
result = new Matrix(1);
result.set(0, 0, (element + m.element));
} else {
result = new Matrix(n, false);
result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]);
result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]);
result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]);
result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);;
}
return result;
}
public Matrix minus(Matrix m) {
Matrix result = null;
if (n == 1) {
result = new Matrix(1);
result.set(0, 0, (element - m.element));
} else {
result = new Matrix(n, false);
result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]);
result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]);
result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]);
result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);;
}
return result;
}
protected Matrix P1(Matrix m) {
return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3]));
}
protected Matrix P2(Matrix m) {
return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3]));
}
protected Matrix P3(Matrix m) {
return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0]));
}
protected Matrix P4(Matrix m) {
return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0]));
}
protected Matrix P5(Matrix m) {
return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3]));
}
protected Matrix P6(Matrix m) {
return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3]));
}
protected Matrix P7(Matrix m) {
return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1]));
}
public int get(int i, int j) {
if (n == 1) {
return element;
} else {
int size = n / 2;
return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size);
}
}
public void display() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.print(get(i, j));
System.out.print(" ");
}
System.out.println();
}
}
public static void main(String[] args) {
Matrix m = new Matrix(2);
Matrix n = new Matrix(2);
m.set(0, 0, 1);
m.set(0, 1, 3);
m.set(1, 0, 5);
m.set(1, 1, 7);
n.set(0, 0, 8);
n.set(0, 1, 4);
n.set(1, 0, 6);
n.set(1, 1, 2);
Matrix res = m.multi(n);
res.display();
}
}以上就是怎么在Java項目中實現(xiàn)一個矩陣乘法,小編相信有部分知識點可能是我們?nèi)粘9ぷ鲿姷交蛴玫降摹OM隳芡ㄟ^這篇文章學(xué)到更多知識。更多詳情敬請關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。
當(dāng)前名稱:怎么在Java項目中實現(xiàn)一個矩陣乘法-創(chuàng)新互聯(lián)
瀏覽地址:http://www.chinadenli.net/article38/djdjpp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)建站、網(wǎng)站內(nèi)鏈、關(guān)鍵詞優(yōu)化、品牌網(wǎng)站制作、網(wǎng)站改版、企業(yè)建站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)