欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

nosql高并發(fā)系統(tǒng)加速的簡單介紹

NoSQL應用

而傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,例如:

10年積累的成都網(wǎng)站建設、做網(wǎng)站經(jīng)驗,可以快速應對客戶對網(wǎng)站的新想法和需求。提供各種問題對應的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡服務。我雖然不認識你,你也不認識我。但先網(wǎng)站制作后付款的網(wǎng)站建設流程,更有桐鄉(xiāng)免費網(wǎng)站建設讓你可以放心的選擇與我們合作。

1、High performance - 對數(shù)據(jù)庫高并發(fā)讀寫的需求

web2.0網(wǎng)站要根據(jù)用戶個性化信息來實時生成動態(tài)頁面和提供動態(tài)信息,所以基本上無法使用動態(tài)頁面靜態(tài)化技術,因此數(shù)據(jù)庫并發(fā)負載非常高,往往要達到每秒上萬次讀寫請求。關系數(shù)據(jù)庫應付上萬次SQL查詢還勉強頂?shù)米。菓渡先f次SQL寫數(shù)據(jù)請求,硬盤IO就已經(jīng)無法承受了。其實對于普通的BBS網(wǎng)站,往往也存在對高并發(fā)寫請求的需求。

2、Huge Storage - 對海量數(shù)據(jù)的高效率存儲和訪問的需求

對于大型的SNS網(wǎng)站,每天用戶產(chǎn)生海量的用戶動態(tài),以國外的Friendfeed為例,一個月就達到了2.5億條用戶動態(tài),對于關系數(shù)據(jù)庫來說,在一張2.5億條記錄的表里面進行SQL查詢,效率是極其低下乃至不可忍受的。再例如大型web網(wǎng)站的用戶登錄系統(tǒng),例如騰訊,盛大,動輒數(shù)以億計的帳號,關系數(shù)據(jù)庫也很難應付。

3、High Scalability High Availability- 對數(shù)據(jù)庫的高可擴展性和高可用性的需求

在基于web的架構當中,數(shù)據(jù)庫是最難進行橫向擴展的,當一個應用系統(tǒng)的用戶量和訪問量與日俱增的時候,你的數(shù)據(jù)庫卻沒有辦法像web server和app server那樣簡單的通過添加更多的硬件和服務節(jié)點來擴展性能和負載能力。對于很多需要提供24小時不間斷服務的網(wǎng)站來說,對數(shù)據(jù)庫系統(tǒng)進行升級和擴展是非常痛苦的事情,往往需要停機維護和數(shù)據(jù)遷移,為什么數(shù)據(jù)庫不能通過不斷的添加服務器節(jié)點來實現(xiàn)擴展呢?

在上面提到的“三高”需求面前,關系數(shù)據(jù)庫遇到了難以克服的障礙,而對于web2.0網(wǎng)站來說,關系數(shù)據(jù)庫的很多主要特性卻往往無用武之地,例如:

1、數(shù)據(jù)庫事務一致性需求

很多web實時系統(tǒng)并不要求嚴格的數(shù)據(jù)庫事務,對讀一致性的要求很低,有些場合對寫一致性要求也不高。因此數(shù)據(jù)庫事務管理成了數(shù)據(jù)庫高負載下一個沉重的負擔。

2、數(shù)據(jù)庫的寫實時性和讀實時性需求

對關系數(shù)據(jù)庫來說,插入一條數(shù)據(jù)之后立刻查詢,是肯定可以讀出來這條數(shù)據(jù)的,但是對于很多web應用來說,并不要求這么高的實時性。

3、對復雜的SQL查詢,特別是多表關聯(lián)查詢的需求

任何大數(shù)據(jù)量的web系統(tǒng),都非常忌諱多個大表的關聯(lián)查詢,以及復雜的數(shù)據(jù)分析類型的復雜SQL報表查詢,特別是SNS類型的網(wǎng)站,從需求以及產(chǎn)品設計角度,就避免了這種情況的產(chǎn)生。往往更多的只是單表的主鍵查詢,以及單表的簡單條件分頁查詢,SQL的功能被極大的弱化了。

因此,關系數(shù)據(jù)庫在這些越來越多的應用場景下顯得不那么合適了,為了解決這類問題的非關系數(shù)據(jù)庫應運而生。

NoSQL 是非關系型數(shù)據(jù)存儲的廣義定義。它打破了長久以來關系型數(shù)據(jù)庫與ACID理論大一統(tǒng)的局面。NoSQL 數(shù)據(jù)存儲不需要固定的表結構,通常也不存在連接操作。在大數(shù)據(jù)存取上具備關系型數(shù)據(jù)庫無法比擬的性能優(yōu)勢。該術語在 2009 年初得到了廣泛認同。

當今的應用體系結構需要數(shù)據(jù)存儲在橫向伸縮性上能夠滿足需求。而 NoSQL 存儲就是為了實現(xiàn)這個需求。Google 的BigTable與Amazon的Dynamo是非常成功的商業(yè) NoSQL 實現(xiàn)。一些開源的 NoSQL 體系,如Facebook 的Cassandra, Apache 的HBase,也得到了廣泛認同。

高并發(fā)寫選sql還是nosql?

SQL的獨特優(yōu)勢包括:

1. SQL能夠加強與數(shù)據(jù)的交互,并允許對單個數(shù)據(jù)庫設計提出問題。這是很關鍵的特征,因為無法交互的數(shù)據(jù)基本上是沒用的,并且,增強的交互性能夠帶來新的見解、新的問題和更有意義的未來交互。

2. SQL是標準化的,使用戶能夠跨系統(tǒng)運用他們的知識,并對第三方附件和工具提供支持。

3. SQL能夠擴展,并且是多功能和經(jīng)過時間驗證的,這能夠解決從快寫為主導的傳輸?shù)綊呙杳芗蜕钊敕治龅葐栴}。

4. SQL對數(shù)據(jù)呈現(xiàn)和存儲采用正交形式,一些SQL系統(tǒng)支持JSON和其他結構化對象格式,比NoSQL具有更好的性能和更多功能。

NoSQL特點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關系數(shù)據(jù)庫的關系型特性。數(shù)據(jù)之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關系性,數(shù)據(jù)庫的結構簡單。NoSQL的Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。

目前哪些NoSQL數(shù)據(jù)庫應用廣泛,各有什么特點

特點:

它們可以處理超大量的數(shù)據(jù)。

它們運行在便宜的PC服務器集群上。

PC集群擴充起來非常方便并且成本很低,避免了“sharding”操作的復雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過NoSQL架構可以省去將Web或Java應用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對于那些繁重的重復操作的數(shù)據(jù),SQL值得花錢。但是當數(shù)據(jù)庫結構非常簡單時,SQL可能沒有太大用處。

沒有過多的操作。

雖然NoSQL的支持者也承認關系數(shù)據(jù)庫提供了無可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對穩(wěn)定,他們同時也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因為NoSQL項目都是開源的,因此它們?nèi)狈烫峁┑恼街С帧_@一點它們與大多數(shù)開源項目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點:

易擴展

NoSQL數(shù)據(jù)庫種類繁多,但是一個共同的特點都是去掉關系數(shù)據(jù)庫的關系型特性。數(shù)據(jù)之間無關系,這樣就非常容易擴展。也無形之間,在架構的層面上帶來了可擴展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無關系性,數(shù)據(jù)庫的結構簡單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對web2.0的交互頻繁的應用,Cache性能不高。而NoSQL的 Cache是記錄級的,是一種細粒度的Cache,所以NoSQL在這個層面上來說就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無需事先為要存儲的數(shù)據(jù)建立字段,隨時可以存儲自定義的數(shù)據(jù)格式。而在關系數(shù)據(jù)庫里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡直就是一個噩夢。這點在大數(shù)據(jù)量的web2.0時代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實現(xiàn)高可用的架構。比如Cassandra,HBase模型,通過復制模型也能實現(xiàn)高可用。

主要應用:

Apache HBase

這個大數(shù)據(jù)管理平臺建立在谷歌強大的BigTable管理引擎基礎上。作為具有開源、Java編碼、分布式多個優(yōu)勢的數(shù)據(jù)庫,Hbase最初被設計應用于Hadoop平臺,而這一強大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實時計算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實時數(shù)據(jù)處理功能,同時還增加了低延遲的儀表板、安全警報,改進了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機會、發(fā)展新業(yè)務。

Apache Spark

該技術采用內(nèi)存計算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復查詢,此外還融合數(shù)據(jù)倉庫、流處理和圖計算等多種計算范式,Spark用Scala語言實現(xiàn),構建在HDFS上,能與Hadoop很好的結合,而且運行速度比MapReduce快100倍。

Apache Hadoop

該技術迅速成為了大數(shù)據(jù)管理標準之一。當它被用來管理大型數(shù)據(jù)集時,對于復雜的分布式應用,Hadoop體現(xiàn)出了非常好的性能,平臺的靈活性使它可以運行在商用硬件系統(tǒng),它還可以輕松地集成結構化、半結構化和甚至非結構化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實無論你有多大的數(shù)據(jù)集,Drill都能輕松應對。通過支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺,允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個問題。這一平臺采用并發(fā)連接,可以將數(shù)據(jù)從關系數(shù)據(jù)庫系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強大的圖形處理平臺,具有很好可擴展性和可用性。該技術已經(jīng)被Facebook采用,Giraph可以運行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過這種方式,你可以得到強大的分布式作圖能力,同時還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術和MapReduce一樣,具有強大的批處理能力,而且Impala對于實時的SQL查詢也有很好的效果,通過高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺上的數(shù)據(jù)。

Gephi

它可以用來對信息進行關聯(lián)和量化處理,通過為數(shù)據(jù)創(chuàng)建功能強大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個圖表類型,而且可以在具有上百萬個節(jié)點的大型網(wǎng)絡上運行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對復雜的IT連接、分布式系統(tǒng)中各個節(jié)點、數(shù)據(jù)流等信息進行可視化分析。

MongoDB

這個堅實的平臺一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術已經(jīng)被廣泛的應用于大數(shù)據(jù)管理。MongoDB是一個應用開源技術開發(fā)的NoSQL數(shù)據(jù)庫,可以用于在JSON這樣的平臺上存儲和處理數(shù)據(jù)。目前,紐約時報、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務器也作為一個參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計算領域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術來提供大數(shù)據(jù)管理服務,但它不是純開源Hadoop,經(jīng)過修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場前景。很多公司基于EMR為客戶提供服務,有一些公司將EMR應用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來EMR可以基于工作量的需要自動縮放調(diào)整大小。亞馬遜計劃為其產(chǎn)品和服務提供更強大的EMR支持,包括它的RedShift數(shù)據(jù)倉庫、新公布的Kenesis實時處理引擎以及計劃中的NoSQL數(shù)據(jù)庫和商業(yè)智能工具。不過AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個發(fā)行版采用了Apache Hadoop開源項目的很多技術,不過基于這些技術的發(fā)行版也有很大的進步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當Cloudera的客戶需要Hadoop不具備的某些功能時,Cloudera的工程師們就會實現(xiàn)這些功能,或者找一個擁有這項技術的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因為其可實現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點使它不同于其他那些供應商。”目前,Cloudera的平臺已經(jīng)擁有200多個付費客戶,一些客戶在Cloudera的技術支持下已經(jīng)可以跨1000多個節(jié)點實現(xiàn)對PB級數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個純粹的Hadoop技術公司。與Cloudera不同的是,Hortonworks堅信開源Hadoop比任何其他供應商的Hadoop發(fā)行版都要強大。Hortonworks的目標是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進開源項目的發(fā)展。Hortonworks平臺和開源Hadoop聯(lián)系緊密,公司管理人員表示這會給用戶帶來好處,因為它可以防止被供應商套牢(如果Hortonworks的客戶想要離開這個平臺,他們可以輕松轉(zhuǎn)向其他開源平臺)。這并不是說Hortonworks完全依賴開源Hadoop技術,而是因為該公司將其所有開發(fā)的成果回報給了開源社區(qū),比如Ambari,這個工具就是由Hortonworks開發(fā)而成,用來填充集群管理項目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應商的支持。

IBM

當企業(yè)考慮一些大的IT項目時,很多人首先會想到IBM。IBM是Hadoop項目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個Hadoop部署,它的很多客戶都有PB級的數(shù)據(jù)。IBM在網(wǎng)格計算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項目實施等眾多領域有著豐富的經(jīng)驗。“IBM計劃繼續(xù)整合SPSS分析、高性能計算、BI工具、數(shù)據(jù)管理和建模、應對高性能計算的工作負載管理等眾多技術。”

Intel

和AWS類似,英特爾不斷改進和優(yōu)化Hadoop使其運行在自己的硬件上,具體來說,就是讓Hadoop運行在其至強芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個產(chǎn)品,所以公司在未來還有很多改進的可能,英特爾和微軟都被認為是Hadoop市場上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過很多人可能都沒有聽說過。Forrester對Hadoop用戶的調(diào)查顯示,MapR的評級最高,其發(fā)行版在架構和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡文件系統(tǒng)(NFS)、災難恢復以及高可用性功能。Forrester說MapR在Hadoop市場上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個真正的大企業(yè),還需要加強伙伴關系和市場營銷。

Microsoft

微軟在開源軟件問題上一直很低調(diào),但在大數(shù)據(jù)形勢下,它不得不考慮讓Windows也兼容Hadoop,它還積極投入到開源項目中,以更廣泛地推動Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項目,包括名為Polybase的項目,讓Hadoop查詢實現(xiàn)了SQLServer查詢的一些功能。Forrester說:“微軟在數(shù)據(jù)庫、數(shù)據(jù)倉庫、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場上有很大優(yōu)勢,而且微軟擁有龐大的用戶群,但要在Hadoop這個領域成為行業(yè)領導者還有很遠的路要走。”

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構建一個性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎上又添加了一些新的工具,包括一個名為HAWQ的SQL引擎以及一個專門解決大數(shù)據(jù)問題的Hadoop應用。Forrester稱Pivotal Hadoop平臺的優(yōu)勢在于它整合了Pivotal、EMC、Vmware的眾多技術,Pivotal的真正優(yōu)勢實際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個,而且大多是中小型客戶。

Teradata

對于Teradata來說,Hadoop既是一種威脅也是一種機遇。數(shù)據(jù)管理,特別是關于SQL和關系數(shù)據(jù)庫這一領域是Teradata的專長。所以像Hadoop這樣的NoSQL平臺崛起可能會威脅到Teradata。相反,Teradata接受了Hadoop,通過與Hortonworks合作,Teradata在Hadoop平臺集成了SQL技術,這使Teradata的客戶可以在Hadoop平臺上方便地使用存儲在Teradata數(shù)據(jù)倉庫中的數(shù)據(jù)。

AMPLab

通過將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜纾@也正是AMPLab所做的。AMPLab致力于機器學習、數(shù)據(jù)挖掘、數(shù)據(jù)庫、信息檢索、自然語言處理和語音識別等多個領域,努力改進對信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴展性。近幾年的發(fā)展使計算機科學進入到全新的時代,而AMPLab為我們設想一個運用大數(shù)據(jù)、云計算、通信等各種資源和技術靈活解決難題的方案,以應對越來越復雜的各種難題。

如何選擇NoSQL數(shù)據(jù)庫

NoSQL,指的是非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的

SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。

NoSQL(NoSQL

= Not Only SQL

),意即“不僅僅是SQL”,是一項全新的數(shù)據(jù)庫革命性運動,早期就有人提出,發(fā)展至2009年趨勢越發(fā)高漲。NoSQL的擁護者們提倡運用非關系型的數(shù)

據(jù)存儲,相對于鋪天蓋地的關系型數(shù)據(jù)庫運用,這一概念無疑是一種全新的思維的注入。

從這一新興技術中選擇一款正確的NoSQL數(shù)據(jù)庫是非常具有挑戰(zhàn)性的。比一下網(wǎng)建議在選擇時考慮以下因素:

并發(fā)控制

發(fā)控制指的是當多個用戶同時更新運行時,用于保護數(shù)據(jù)庫完整性的各種技術。并發(fā)機制不正確可能導致臟讀、幻讀和不可重復讀等此類問題。并發(fā)控制的目的是保

證一個用戶的工作不會對另一個用戶的工作產(chǎn)生不合理的影響。在某些情況下,這些措施保證了當用戶和其他用戶一起操作時,所得的結果和她單獨操作時的結果是

一樣的。在另一些情況下,這表示用戶的工作按預定的方式受其他用戶的影響。

封鎖

就是事務T在對某個數(shù)據(jù)對象(例如表、記錄等)操作之前,先向系統(tǒng)發(fā)出請求,對其加鎖。加鎖后事務T就對該數(shù)據(jù)對象有了一定的控制,在事務T釋放它的鎖之前,其它的事務不能更新此數(shù)據(jù)對象。

封鎖是一次只允許一個用戶讀取或修改的一種機制,是實現(xiàn)并發(fā)控制的一個非常重要的技術。

MVCC

Multi-Version Concurrency Control多版本并發(fā)控制,維持一個數(shù)據(jù)的多個版本使讀寫操作沒有沖突。MVCC優(yōu)化了數(shù)據(jù)庫并發(fā)系統(tǒng),使系統(tǒng)在有大量并發(fā)用戶時得到最高的性能,并且可以不用關閉服務器就直接進行熱備份。

ACID

數(shù)據(jù)庫事務正確執(zhí)行的四個基本要素的縮寫。包含:原子性(Atomicity)、一致性(Consistency)、隔離性(Isolation)、持久

性(Durability)。一個支持事務(Transaction)的數(shù)據(jù)庫系統(tǒng),必需要具有這四種特性,否則在事務過程(Transaction

processing)當中無法保證數(shù)據(jù)的正確性,交易過程極可能達不到交易方的要求。

None

一些系統(tǒng)不提供原子性。

鏡像

數(shù)據(jù)庫鏡像是DBMS根據(jù)DBA的要求,自動把整個數(shù)據(jù)庫或其中的關鍵數(shù)據(jù)復制到另一個磁盤上,每當主數(shù)據(jù)庫更新時,DBMS會自動把更新后的數(shù)據(jù)復制過去,即DBMS自動保證鏡像數(shù)據(jù)與主數(shù)據(jù)的一致性。

鏡像分為同步和異步。

數(shù)據(jù)存儲

指的是數(shù)據(jù)的物理特性怎樣被存儲在數(shù)據(jù)庫中。

磁盤 數(shù)據(jù)被存儲在硬盤驅(qū)動器里;

GFS或谷歌文件系統(tǒng)是一個由谷歌開發(fā)的專有的分布式文件系統(tǒng);

Hadoop是Apache軟件框架,免費許可下支持數(shù)據(jù)密集型分布式應用程序;

RAM隨機存儲器;

插件 可以添加外部插件;

Amazon S3通過Web服務接口提供存儲;

BDB:BDB

全稱是 “Berkeley DB”,它是MySQL具有事務能力的表類型,由Sleepycat

Software開發(fā)。BDB表類型提供了MySQL用戶長久期盼的功能,即事務控制能力。在任何RDBMS中,事務控制能力都是一種極其重要和寶貴的功

能。事務控制能力使得我們能夠確保一組命令確實已經(jīng)全部執(zhí)行成功,或者確保當任何一個命令出現(xiàn)錯誤時所有命令的執(zhí)行結果均被退回。

實現(xiàn)語言

實現(xiàn)語言會影響數(shù)據(jù)庫的發(fā)展速度。典型的NoSQL數(shù)據(jù)庫是用低級語言如C / C + +編寫的。另一方面,那些更高層次的語言如Java,使自定義更容易。

實現(xiàn)語言有:C, C++, Erlang, Java, Python

特性

考慮下列哪一個特點對你的數(shù)據(jù)庫是最重要的:

持久性

可用性

一致性

分區(qū)容忍性

證書類型

下面這些許可證是一個不同的開放源碼許可的形式:

GPL:通用公共許可證

BSD:伯克利軟件分發(fā)

MPL:Mozilla公共許可證

EPL:Eclipse公共許可證

IDPL:最初的開發(fā)者的公共許可證

LGPL:較寬松通用公共許可證

存儲類型

存儲類型是NoSQL數(shù)據(jù)庫最大的不同,是決定使用哪款數(shù)據(jù)庫的一個首要指標。

關鍵字:支持get、put和刪除操作

按列存儲:相對于傳統(tǒng)的按行存儲,數(shù)據(jù)集成容易多了

面向文件系統(tǒng):存儲像是JSON或XML這樣的結構化文件,很容易就能從面向?qū)ο筌浖蝎@取數(shù)據(jù)。

分享題目:nosql高并發(fā)系統(tǒng)加速的簡單介紹
文章來源:http://www.chinadenli.net/article36/dsdgdsg.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供云服務器網(wǎng)頁設計公司Google企業(yè)網(wǎng)站制作靜態(tài)網(wǎng)站外貿(mào)建站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

商城網(wǎng)站建設