本文章向大家介紹怎么在python中利用多線程與多進(jìn)程實(shí)現(xiàn)數(shù)據(jù)共享,主要包括怎么在python中利用多線程與多進(jìn)程實(shí)現(xiàn)數(shù)據(jù)共享的使用實(shí)例、應(yīng)用技巧、基本知識(shí)點(diǎn)總結(jié)和需要注意事項(xiàng),具有一定的參考價(jià)值,需要的朋友可以參考一下。
Python是一種編程語(yǔ)言,內(nèi)置了許多有效的工具,Python幾乎無(wú)所不能,該語(yǔ)言通俗易懂、容易入門(mén)、功能強(qiáng)大,在許多領(lǐng)域中都有廣泛的應(yīng)用,例如最熱門(mén)的大數(shù)據(jù)分析,人工智能,Web開(kāi)發(fā)等。
多線程之間的共享數(shù)據(jù)
標(biāo)準(zhǔn)數(shù)據(jù)類(lèi)型在線程間共享
看以下代碼
#coding:utf-8 import threading def test(name,data): print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) if __name__ == '__main__': d = 5 name = "楊彥星" for i in range(5): th = threading.Thread(target=test,args=(name,d)) th.start()
這里我創(chuàng)建一個(gè)全局的int變量d,它的值是5,當(dāng)我在5個(gè)線程中調(diào)用test函數(shù)時(shí),將d作為參數(shù)傳進(jìn)去,那么這5個(gè)線程所擁有的是同一個(gè)d嗎?我在test函數(shù)中通過(guò) id(data) 來(lái)打印一下它們的ID,得到了如下的結(jié)果
in thread <Thread(Thread-1, started 6624)> name is 楊彥星 data is 5 id(data) is 1763791776 in thread <Thread(Thread-2, started 8108)> name is 楊彥星 data is 5 id(data) is 1763791776 in thread <Thread(Thread-3, started 3356)> name is 楊彥星 data is 5 id(data) is 1763791776 in thread <Thread(Thread-4, started 13728)> name is 楊彥星 data is 5 id(data) is 1763791776 in thread <Thread(Thread-5, started 3712)> name is 楊彥星 data is 5 id(data) is 1763791776
從結(jié)果中可以看到,在5個(gè)子線程中,data的id都是1763791776,說(shuō)明在主線程中創(chuàng)建了變量d,在子線程中是可以共享的,在子線程中對(duì)共享元素的改變是會(huì)影響到其它線程的,所以如果要對(duì)共享變量進(jìn)行修改時(shí),也就是線程不安全的,需要加鎖。
自定義類(lèi)型對(duì)象在線程間共享
如果我們要自定義一個(gè)類(lèi)呢,將一個(gè)對(duì)象作為變量在子線程中傳遞呢?會(huì)是什么效果呢?
#coding:utf-8 import threading class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data def test(name,data): print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data.get(),id(data))) if __name__ == '__main__': d = Data(10) name = "楊彥星" print("in main thread id(data) is {}".format(id(d))) for i in range(5): th = threading.Thread(target=test,args=(name,d)) th.start()
這里我定義一個(gè)簡(jiǎn)單的類(lèi),在主線程初始化了一個(gè)該類(lèi)型的對(duì)象d,然后將它作為參數(shù)傳給子線程,主線程和子線程分別打印了這個(gè)對(duì)象的id,我們來(lái)看一下結(jié)果
in main thread id(data) is 2849240813864 in thread <Thread(Thread-1, started 11648)> name is 楊彥星 data is 10 id(data) is 2849240813864 in thread <Thread(Thread-2, started 11016)> name is 楊彥星 data is 10 id(data) is 2849240813864 in thread <Thread(Thread-3, started 10416)> name is 楊彥星 data is 10 id(data) is 2849240813864 in thread <Thread(Thread-4, started 8668)> name is 楊彥星 data is 10 id(data) is 2849240813864 in thread <Thread(Thread-5, started 4420)> name is 楊彥星 data is 10 id(data) is 2849240813864
我們看到,在主線程和子線程中,這個(gè)對(duì)象的id是一樣的,說(shuō)明它們用的是同一個(gè)對(duì)象。
無(wú)論是標(biāo)準(zhǔn)數(shù)據(jù)類(lèi)型還是復(fù)雜的自定義數(shù)據(jù)類(lèi)型,它們?cè)诙嗑€程之間是共享同一個(gè)的,但是在多進(jìn)程中是這樣的嗎?
多進(jìn)程之間的共享數(shù)據(jù)
標(biāo)準(zhǔn)數(shù)據(jù)類(lèi)型在進(jìn)程間共享
還是上面的代碼,我們先來(lái)看一下int類(lèi)型的變量的子進(jìn)程間的共享
#coding:utf-8 import threading import multiprocessing def test(name,data): print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) if __name__ == '__main__': d = 10 name = "楊彥星" print("in main thread id(data) is {}".format(id(d))) for i in range(5): pro = multiprocessing.Process(target=test,args=(name,d)) pro.start()
得到的結(jié)果是
in main thread id(data) is 1763791936 in thread <_MainThread(MainThread, started 9364)> name is 楊彥星 data is 10 id(data) is 1763791936 in thread <_MainThread(MainThread, started 9464)> name is 楊彥星 data is 10 id(data) is 1763791936 in thread <_MainThread(MainThread, started 3964)> name is 楊彥星 data is 10 id(data) is 1763791936 in thread <_MainThread(MainThread, started 10480)> name is 楊彥星 data is 10 id(data) is 1763791936 in thread <_MainThread(MainThread, started 13608)> name is 楊彥星 data is 10 id(data) is 1763791936
可以看到它們的id是一樣的,說(shuō)明用的是同一個(gè)變量,但是當(dāng)我嘗試把d由int變?yōu)榱藄tring時(shí),發(fā)現(xiàn)它們又不一樣了……
if __name__ == '__main__': d = 'yangyanxing' name = "楊彥星" print("in main thread id(data) is {}".format(id(d))) for i in range(5): pro = multiprocessing.Process(target=test,args=(name,d)) pro.start()
此時(shí)得到的結(jié)果是
in main thread id(data) is 2629633397040 in thread <_MainThread(MainThread, started 9848)> name is 楊彥星 data is yangyanxing id(data) is 1390942032880 in thread <_MainThread(MainThread, started 988)> name is 楊彥星 data is yangyanxing id(data) is 2198251377648 in thread <_MainThread(MainThread, started 3728)> name is 楊彥星 data is yangyanxing id(data) is 2708672287728 in thread <_MainThread(MainThread, started 5288)> name is 楊彥星 data is yangyanxing id(data) is 2376058999792 in thread <_MainThread(MainThread, started 12508)> name is 楊彥星 data is yangyanxing id(data) is 2261044040688
于是我又嘗試了list、Tuple、dict,結(jié)果它們都是不一樣的,我又回過(guò)頭來(lái)試著在多線程中使用列表元組和字典,結(jié)果它們還是一樣的。
這里有一個(gè)有趣的問(wèn)題,如果是int類(lèi)型,當(dāng)值小于等于256時(shí),它們?cè)诙噙M(jìn)程間的id是相同的,如果大于256,則它們的id就會(huì)不同了,這個(gè)我沒(méi)有查看原因。
自定義類(lèi)型對(duì)象在進(jìn)程間共享
#coding:utf-8 import threading import multiprocessing class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data def test(name,data): print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data.get(),id(data))) if __name__ == '__main__': d = Data(10) name = "楊彥星" print("in main thread id(data) is {}".format(id(d))) for i in range(5): pro = multiprocessing.Process(target=test,args=(name,d)) pro.start()
得到的結(jié)果是
in main thread id(data) is 1927286591728 in thread <_MainThread(MainThread, started 2408)> name is 楊彥星 data is 10 id(data) is 1561177927752 in thread <_MainThread(MainThread, started 5728)> name is 楊彥星 data is 10 id(data) is 2235260514376 in thread <_MainThread(MainThread, started 1476)> name is 楊彥星 data is 10 id(data) is 2350586073040 in thread <_MainThread(MainThread, started 996)> name is 楊彥星 data is 10 id(data) is 2125002248088 in thread <_MainThread(MainThread, started 10740)> name is 楊彥星 data is 10 id(data) is 1512231669656
可以看到它們的id是不同的,也就是不同的對(duì)象。
在多進(jìn)程間如何共享數(shù)據(jù)
我們看到,數(shù)據(jù)在多進(jìn)程間是不共享的(小于256的int類(lèi)型除外),但是我們又想在主進(jìn)程和子進(jìn)程間共享一個(gè)數(shù)據(jù)對(duì)象時(shí)該如何操作呢?
在看這個(gè)問(wèn)題之前,我們先將之前的多線程代碼做下修改
#coding:utf-8 import threading import multiprocessing class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data def test(name,data,lock): lock.acquire() print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) data.set(data.get()+1) lock.release() if __name__ == '__main__': d = Data(0) thlist = [] name = "yang" lock = threading.Lock() for i in range(5): th = threading.Thread(target=test,args=(name,d,lock)) th.start() thlist.append(th) for i in thlist: i.join() print(d.get())
我們這個(gè)代碼的目的是這樣,使用自定義的Data類(lèi)型對(duì)象,當(dāng)經(jīng)過(guò)5個(gè)子線程操作以后,每個(gè)子線程對(duì)其data值進(jìn)行加1操作,最后在主線程打印對(duì)象的data值。
該輸出結(jié)果如下
in thread <Thread(Thread-1, started 3296)> name is yang data is <__main__.Data object at 0x000001A451139198> id(data) is 1805246501272 in thread <Thread(Thread-2, started 9436)> name is yang data is <__main__.Data object at 0x000001A451139198> id(data) is 1805246501272 in thread <Thread(Thread-3, started 760)> name is yang data is <__main__.Data object at 0x000001A451139198> id(data) is 1805246501272 in thread <Thread(Thread-4, started 1952)> name is yang data is <__main__.Data object at 0x000001A451139198> id(data) is 1805246501272 in thread <Thread(Thread-5, started 5988)> name is yang data is <__main__.Data object at 0x000001A451139198> id(data) is 1805246501272
可以看到在主線程最后打印出來(lái)了5,符合我們的預(yù)期,但是如果放到多進(jìn)程中呢?因?yàn)槎噙M(jìn)程下,每個(gè)子進(jìn)程所持有的對(duì)象是不同的,所以每個(gè)子進(jìn)程操作的是各自的Data對(duì)象,對(duì)于主進(jìn)程的Data對(duì)象應(yīng)該是沒(méi)有影響的,我們來(lái)看下它的結(jié)果
#coding:utf-8 import threading import multiprocessing class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data def test(name,data,lock): lock.acquire() print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) data.set(data.get()+1) lock.release() if __name__ == '__main__': d = Data(0) thlist = [] name = "yang" lock = multiprocessing.Lock() for i in range(5): th = multiprocessing.Process(target=test,args=(name,d,lock)) th.start() thlist.append(th) for i in thlist: i.join() print(d.get())
它的輸出結(jié)果是:
in thread <_MainThread(MainThread, started 7604)> name is yang data is <__mp_main__.Data object at 0x000001D110130EB8> id(data) is 1997429477048 in thread <_MainThread(MainThread, started 12108)> name is yang data is <__mp_main__.Data object at 0x000002C4E88E0E80> id(data) is 3044738469504 in thread <_MainThread(MainThread, started 3848)> name is yang data is <__mp_main__.Data object at 0x0000027827270EF0> id(data) is 2715076202224 in thread <_MainThread(MainThread, started 12368)> name is yang data is <__mp_main__.Data object at 0x000002420EA80E80> id(data) is 2482736991872 in thread <_MainThread(MainThread, started 4152)> name is yang data is <__mp_main__.Data object at 0x000001B1577F0E80> id(data) is 1861188783744
最后的輸出是0,說(shuō)明了子進(jìn)程對(duì)于主進(jìn)程傳入的Data對(duì)象操作其實(shí)對(duì)于主進(jìn)程的對(duì)象是不起作用的,我們需要怎樣的操作才能實(shí)現(xiàn)子進(jìn)程可以操作主進(jìn)程的對(duì)象呢?我們可以使用 multiprocessing.managers
下的 BaseManager 來(lái)實(shí)現(xiàn)
#coding:utf-8 import threading import multiprocessing from multiprocessing.managers import BaseManager class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data BaseManager.register("mydata",Data) def test(name,data,lock): lock.acquire() print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) data.set(data.get()+1) lock.release() def getManager(): m = BaseManager() m.start() return m if __name__ == '__main__': manager = getManager() d = manager.mydata(0) thlist = [] name = "yang" lock = multiprocessing.Lock() for i in range(5): th = multiprocessing.Process(target=test,args=(name,d,lock)) th.start() thlist.append(th) for i in thlist: i.join() print(d.get())
使用 from multiprocessing.managers import BaseManager
引入 BaseManager以后,在定義完Data類(lèi)型之后,使用 BaseManager.register("mydata",Data)
將Data類(lèi)型注冊(cè)到BaseManager中,并且給了它一個(gè)名字叫 mydata ,之后就可以使用 BaseManager 對(duì)象的這個(gè)名字來(lái)初始化對(duì)象,我們來(lái)看一下輸出
C:\Python35\python.exe F:/python/python3Test/multask.py in thread <_MainThread(MainThread, started 12244)> name is yang data is <__mp_main__.Data object at 0x000001FE1B7D9668> id(data) is 2222932504080 in thread <_MainThread(MainThread, started 2860)> name is yang data is <__mp_main__.Data object at 0x000001FE1B7D9668> id(data) is 1897574510096 in thread <_MainThread(MainThread, started 2748)> name is yang data is <__mp_main__.Data object at 0x000001FE1B7D9668> id(data) is 2053415775760 in thread <_MainThread(MainThread, started 7812)> name is yang data is <__mp_main__.Data object at 0x000001FE1B7D9668> id(data) is 2766155820560 in thread <_MainThread(MainThread, started 2384)> name is yang data is <__mp_main__.Data object at 0x000001FE1B7D9668> id(data) is 2501159890448
我們看到,雖然在每個(gè)子進(jìn)程中使用的是不同的對(duì)象,但是它們的值卻是可以“共享”的。
標(biāo)準(zhǔn)的數(shù)據(jù)類(lèi)型也可以通過(guò)multiprocessing
庫(kù)中的Value對(duì)象,舉一個(gè)簡(jiǎn)單的例子
#coding:utf-8 import threading import multiprocessing from multiprocessing.managers import BaseManager class Data: def __init__(self,data=None): self.data = data def get(self): return self.data def set(self,data): self.data = data BaseManager.register("mydata",Data) def test(name,data,lock): lock.acquire() print("in thread {} name is {}".format(threading.current_thread(),name)) print("data is {} id(data) is {}".format(data,id(data))) data.value +=1 lock.release() if __name__ == '__main__': d = multiprocessing.Value("l",10) # print(d) thlist = [] name = "yang" lock = multiprocessing.Lock() for i in range(5): th = multiprocessing.Process(target=test,args=(name,d,lock)) th.start() thlist.append(th) for i in thlist: i.join() print(d.value)
這里使用 d = multiprocessing.Value("l",10)
初始化了一個(gè)數(shù)字類(lèi)型的對(duì)象,這個(gè)類(lèi)型是 Synchronized wrapper for c_long , multiprocessing.Value
在初始化時(shí),第一個(gè)參數(shù)是類(lèi)型,第二個(gè)參數(shù)是值,具體支持的類(lèi)型如下
還可以使用ctypes庫(kù)里和類(lèi)初始化字符串
>>> from ctypes import c_char_p >>> s = multiprocessing.Value(c_char_p, b'\xd1\xee\xd1\xe5\xd0\xc7') >>> print(s.value.decode('gbk'))
楊彥星
還可以使用Manager對(duì)象初始list,dict等
#coding:utf-8 import multiprocessing def func(mydict, mylist): # 子進(jìn)程改變dict,主進(jìn)程跟著改變 mydict["index1"] = "aaaaaa" # 子進(jìn)程改變List,主進(jìn)程跟著改變 mydict["index2"] = "bbbbbb" mylist.append(11) mylist.append(22) mylist.append(33) if __name__ == "__main__": # 主進(jìn)程與子進(jìn)程共享這個(gè)字典 mydict = multiprocessing.Manager().dict() # 主進(jìn)程與子進(jìn)程共享這個(gè)List mylist = multiprocessing.Manager().list(range(5)) p = multiprocessing.Process(target=func, args=(mydict, mylist)) p.start() p.join() print(mylist) print(mydict)
到此這篇關(guān)于怎么在python中利用多線程與多進(jìn)程實(shí)現(xiàn)數(shù)據(jù)共享的文章就介紹到這了,更多相關(guān)的內(nèi)容請(qǐng)搜索創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持創(chuàng)新互聯(lián)成都網(wǎng)站設(shè)計(jì)公司!
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無(wú)理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國(guó)服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡(jiǎn)單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢(shì),專(zhuān)為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場(chǎng)景需求。
網(wǎng)站題目:怎么在python中利用多線程與多進(jìn)程實(shí)現(xiàn)數(shù)據(jù)共享-創(chuàng)新互聯(lián)
當(dāng)前鏈接:http://www.chinadenli.net/article36/dgcpsg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供商城網(wǎng)站、面包屑導(dǎo)航、全網(wǎng)營(yíng)銷(xiāo)推廣、響應(yīng)式網(wǎng)站、App設(shè)計(jì)、網(wǎng)站導(dǎo)航
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容