如何在python中使用opencv實現(xiàn)圖像拼接?相信很多沒有經(jīng)驗的人對此束手無策,為此本文總結(jié)了問題出現(xiàn)的原因和解決方法,通過這篇文章希望你能解決這個問題。

實現(xiàn)上述效果的步驟如下:
1. 采用surft特征檢測算法檢測兩幅圖像的關(guān)鍵特征點;
2. 建立FLANN匹配器,采用目前最快的特征匹配(最近鄰搜索)算法FlannBasedMatcher匹配關(guān)鍵點
3.從所匹配的全部關(guān)鍵點中篩選出優(yōu)秀的特征點(基于距離篩選)
4. 根據(jù)查詢圖像和模板圖像的特征描述子索引得出仿射變換矩陣
5. 獲取左邊圖像到右邊圖像的投影映射關(guān)系
6. 透視變換將左圖像放在相應(yīng)的位置
7. 將有圖像拷貝到特定位置完成拼接
先放python下利用opencv 進行圖像拼接的代碼,環(huán)境為python2.7+opencv2:
#coding: utf-8
import numpy as np
import cv2
leftgray = cv2.imread('1.jpg')
rightgray = cv2.imread('2.jpg')
hessian=400
surf=cv2.SURF(hessian) #將Hessian Threshold設(shè)置為400,閾值越大能檢測的特征就越少
kp1,des1=surf.detectAndCompute(leftgray,None) #查找關(guān)鍵點和描述符
kp2,des2=surf.detectAndCompute(rightgray,None)
FLANN_INDEX_KDTREE=0 #建立FLANN匹配器的參數(shù)
indexParams=dict(algorithm=FLANN_INDEX_KDTREE,trees=5) #配置索引,密度樹的數(shù)量為5
searchParams=dict(checks=50) #指定遞歸次數(shù)
#FlannBasedMatcher:是目前最快的特征匹配算法(最近鄰搜索)
flann=cv2.FlannBasedMatcher(indexParams,searchParams) #建立匹配器
matches=flann.knnMatch(des1,des2,k=2) #得出匹配的關(guān)鍵點
good=[]
#提取優(yōu)秀的特征點
for m,n in matches:
if m.distance < 0.7*n.distance: #如果第一個鄰近距離比第二個鄰近距離的0.7倍小,則保留
good.append(m)
src_pts = np.array([ kp1[m.queryIdx].pt for m in good]) #查詢圖像的特征描述子索引
dst_pts = np.array([ kp2[m.trainIdx].pt for m in good]) #訓(xùn)練(模板)圖像的特征描述子索引
H=cv2.findHomography(src_pts,dst_pts) #生成變換矩陣
h,w=leftgray.shape[:2]
h2,w1=rightgray.shape[:2]
shft=np.array([[1.0,0,w],[0,1.0,0],[0,0,1.0]])
M=np.dot(shft,H[0]) #獲取左邊圖像到右邊圖像的投影映射關(guān)系
dst_corners=cv2.warpPerspective(leftgray,M,(w*2,h))#透視變換,新圖像可容納完整的兩幅圖
cv2.imshow('tiledImg1',dst_corners) #顯示,第一幅圖已在標準位置
dst_corners[0:h,w:w*2]=rightgray #將第二幅圖放在右側(cè)
#cv2.imwrite('tiled.jpg',dst_corners)
cv2.imshow('tiledImg',dst_corners)
cv2.imshow('leftgray',leftgray)
cv2.imshow('rightgray',rightgray)
cv2.waitKey()
cv2.destroyAllWindows()看完上述內(nèi)容,你們掌握如何在python中使用opencv實現(xiàn)圖像拼接的方法了嗎?如果還想學(xué)到更多技能或想了解更多相關(guān)內(nèi)容,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝各位的閱讀!
文章題目:如何在python中使用opencv實現(xiàn)圖像拼接-創(chuàng)新互聯(lián)
分享URL:http://www.chinadenli.net/article36/dcpcpg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站策劃、響應(yīng)式網(wǎng)站、網(wǎng)站設(shè)計、商城網(wǎng)站、建站公司、云服務(wù)器
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容