這篇文章主要講解了怎么使用Tensorflow中的降維函數(shù)tf.reduce_*,內(nèi)容清晰明了,對此有興趣的小伙伴可以學習一下,相信大家閱讀完之后會有幫助。

在使用tensorflow時常常會使用到tf.reduce_*這類的函數(shù),在此對一些常見的函數(shù)進行匯總
1.tf.reduce_sum
tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)
參數(shù):
返回:
該函數(shù)返回減少的張量,相當于np.sum
功能:
此函數(shù)計算一個張量的各個維度上元素的總和。
說明:
函數(shù)中的input_tensor是按照axis中已經(jīng)給定的維度來減少的;除非 keep_dims 是true,否則張量的秩將在axis的每個條目中減少1;如果keep_dims為true,則減小的維度將保留為長度1。 如果axis沒有條目,則縮小所有維度,并返回具有單個元素的張量。
舉例:
x = tf.constant([[1, 1, 1], [1, 1, 1]]) tf.reduce_sum(x) # 6 tf.reduce_sum(x, 0) # [2, 2, 2] tf.reduce_sum(x, 1) # [3, 3] tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]] tf.reduce_sum(x, [0, 1]) # 6
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機、免備案服務(wù)器”等云主機租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價比高”等特點與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
本文名稱:怎么使用Tensorflow中的降維函數(shù)tf.reduce_*-創(chuàng)新互聯(lián)
標題鏈接:http://www.chinadenli.net/article30/igoso.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供靜態(tài)網(wǎng)站、虛擬主機、小程序開發(fā)、網(wǎng)站內(nèi)鏈、軟件開發(fā)、網(wǎng)站改版
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容