這篇文章將為大家詳細講解有關(guān)R語言匯總統(tǒng)計中怎么批量計算不同因素不同水平的平均值,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
10年積累的網(wǎng)站設(shè)計制作、做網(wǎng)站經(jīng)驗,可以快速應(yīng)對客戶對網(wǎng)站的新想法和需求。提供各種問題對應(yīng)的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡(luò)服務(wù)。我雖然不認識你,你也不認識我。但先網(wǎng)站制作后付款的網(wǎng)站建設(shè)流程,更有大關(guān)免費網(wǎng)站建設(shè)讓你可以放心的選擇與我們合作。
實際工作中,我們需要對數(shù)據(jù)進行平均值計算,這里我比較了aggregate
和data.table
的方法,測試主要包括:
1,對數(shù)據(jù)yield計算平均值
2,計算N不同水平的平均值
3, 計算N和P不同水平的平均值
1. 常規(guī)方法aggregate
代碼:
data(npk)
head(npk)
aggregate(yield~N,data=npk,FUN = mean)
aggregate(yield~N+P,data=npk,FUN = mean)
結(jié)果
> aggregate(yield~N,data=npk,FUN = mean)
N yield
1 0 52.06667
2 1 57.68333
> aggregate(yield~N+P,data=npk,FUN = mean)
N P yield
1 0 0 51.71667
2 1 0 59.21667
3 0 1 52.41667
4 1 1 56.15000
2. 使用data.table方法
代碼:
data(npk)
head(npk)
library(data.table)
setDT(npk)
# 單個變量
npk[,mean(yield),by=N]
# 兩個變量
npk[,mean(yield),by=c("N","P")]
# 兩個變量的另一種寫法
npk[,mean(yield),by=list(N,P)]
npk[,mean(yield),by=.(N,P)]
結(jié)果:
> # 單個變量
> npk[,mean(yield),by=N]
N V1
1: 0 52.06667
2: 1 57.68333
>
> # 兩個變量
> npk[,mean(yield),by=c("N","P")]
N P V1
1: 0 1 52.41667
2: 1 1 56.15000
3: 0 0 51.71667
4: 1 0 59.21667
>
>
> # 兩個變量的另一種寫法
> npk[,mean(yield),by=list(N,P)]
N P V1
1: 0 1 52.41667
2: 1 1 56.15000
3: 0 0 51.71667
4: 1 0 59.21667
> npk[,mean(yield),by=.(N,P)]
N P V1
1: 0 1 52.41667
2: 1 1 56.15000
3: 0 0 51.71667
4: 1 0 59.21667
關(guān)于“R語言匯總統(tǒng)計中怎么批量計算不同因素不同水平的平均值”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
網(wǎng)頁題目:R語言匯總統(tǒng)計中怎么批量計算不同因素不同水平的平均值
文章轉(zhuǎn)載:http://www.chinadenli.net/article26/joihcg.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供用戶體驗、Google、網(wǎng)站營銷、域名注冊、全網(wǎng)營銷推廣、網(wǎng)站設(shè)計
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)