這篇文章主要介紹python中sklearn常用分類算法模型如何調(diào)用,文中介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們一定要看完!

具體內(nèi)容如下
實(shí)現(xiàn)對'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的簡單調(diào)用。
# coding=gbk
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
data = pd.read_csv(data_file)
train = data[:int(len(data)*0.9)]
test = data[int(len(data)*0.9):]
train_y = train.label
train_x = train.drop('label', axis=1)
test_y = test.label
test_x = test.drop('label', axis=1)
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "H:\\Research\\data\\trainCG.csv"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))以上是“python中sklearn常用分類算法模型如何調(diào)用”這篇文章的所有內(nèi)容,感謝各位的閱讀!希望分享的內(nèi)容對大家有幫助,更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道!
文章標(biāo)題:python中sklearn常用分類算法模型如何調(diào)用-創(chuàng)新互聯(lián)
網(wǎng)頁地址:http://www.chinadenli.net/article22/pogcc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供動態(tài)網(wǎng)站、自適應(yīng)網(wǎng)站、服務(wù)器托管、品牌網(wǎng)站設(shè)計(jì)、關(guān)鍵詞優(yōu)化、響應(yīng)式網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容