欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

本篇內(nèi)容介紹了“怎么定位哪些SQL產(chǎn)生了大量的Redo日志”的有關(guān)知識(shí),在實(shí)際案例的操作過程中,不少人都會(huì)遇到這樣的困境,接下來就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

創(chuàng)新互聯(lián)公司專注于鄂托克網(wǎng)站建設(shè)服務(wù)及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗(yàn)。 熱誠(chéng)為您提供鄂托克營(yíng)銷型網(wǎng)站建設(shè),鄂托克網(wǎng)站制作、鄂托克網(wǎng)頁(yè)設(shè)計(jì)、鄂托克網(wǎng)站官網(wǎng)定制、成都小程序開發(fā)服務(wù),打造鄂托克網(wǎng)絡(luò)公司原創(chuàng)品牌,更為您提供鄂托克網(wǎng)站排名全網(wǎng)營(yíng)銷落地服務(wù)。

首先,我們需要定位、判斷那個(gè)時(shí)間段的日志突然暴增了,注意,有些時(shí)間段生成了大量的redo  log是正常業(yè)務(wù)行為,有可能每天這個(gè)時(shí)間段都有大量歸檔日志生成,例如,有大量作業(yè)在這個(gè)時(shí)間段集中運(yùn)行。而要分析突然、異常的大量redo  log生成情況,就必須有數(shù)據(jù)分析對(duì)比,找到redo  log大量產(chǎn)生的時(shí)間段,縮小分析的范圍是第一步。合理的縮小范圍能夠方便快速準(zhǔn)確定位問題SQL。下面SQL語(yǔ)句分別統(tǒng)計(jì)了redo  log的切換次數(shù)的相關(guān)數(shù)據(jù)指標(biāo)。這個(gè)可以間接判斷那個(gè)時(shí)間段產(chǎn)生了大量歸檔日志。

/******統(tǒng)計(jì)每天redo log的切換次數(shù)匯總,以及與平均次數(shù)的對(duì)比*****/ WITH T AS  (     SELECT TO_CHAR(FIRST_TIME, 'YYYY-MM-DD')    AS LOG_GEN_DAY,             TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME, 'YYYY-MM-DD'),                         TO_CHAR(FIRST_TIME, 'YYYY-MM-DD'), 1, 0))                 , '999') AS "LOG_SWITCH_NUM"      FROM   V$LOG_HISTORY    WHERE FIRST_TIME < TRUNC(SYSDATE)  --排除當(dāng)前這一天     GROUP  BY TO_CHAR(FIRST_TIME, 'YYYY-MM-DD')  ) SELECT  T.LOG_GEN_DAY       , T.LOG_SWITCH_NUM       , M.AVG_LOG_SWITCH_NUM       , (T.LOG_SWITCH_NUM-M.AVG_LOG_SWITCH_NUM) AS DIFF_SWITCH_NUM FROM  T CROSS JOIN  (     SELECT  TO_CHAR(AVG(T.LOG_SWITCH_NUM),'999') AS AVG_LOG_SWITCH_NUM     FROM T ) M ORDER BY T.LOG_GEN_DAY DESC;       SELECT    TO_CHAR(FIRST_TIME,'YYYY-MM-DD') DAY,                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'00',1,0)),'999') "00",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'01',1,0)),'999') "01",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'02',1,0)),'999') "02",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'03',1,0)),'999') "03",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'04',1,0)),'999') "04",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'05',1,0)),'999') "05",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'06',1,0)),'999') "06",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'07',1,0)),'999') "07",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'08',1,0)),'999') "08",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'09',1,0)),'999') "09",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'10',1,0)),'999') "10",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'11',1,0)),'999') "11",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'12',1,0)),'999') "12",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'13',1,0)),'999') "13",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'14',1,0)),'999') "14",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'15',1,0)),'999') "15",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'16',1,0)),'999') "16",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'17',1,0)),'999') "17",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'18',1,0)),'999') "18",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'19',1,0)),'999') "19",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'20',1,0)),'999') "20",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'21',1,0)),'999') "21",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'22',1,0)),'999') "22",                 TO_CHAR(SUM(DECODE(TO_CHAR(FIRST_TIME,'HH24'),'23',1,0)),'999') "23" FROM V$LOG_HISTORY GROUP BY TO_CHAR(FIRST_TIME,'YYYY-MM-DD')  ORDER BY 1 DESC;

如下案例所示,2018-03-26日有一個(gè)歸檔日志暴增的情況,我們可以橫向、縱向?qū)Ρ确治觯缓笈卸ㄔ?7點(diǎn)到18點(diǎn)這段時(shí)間出現(xiàn)異常,這個(gè)時(shí)間段與往常對(duì)比,生成了大量的redo  log。

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

這里分享一個(gè)非常不錯(cuò)的分析redo log 歷史信息的SQL

------------------------------------------------------------------------------------------------ REM Author: Riyaj Shamsudeen @OraInternals, LLC REM         www.orainternals.com REM REM Functionality: This script is to print redo size rates in a RAC claster REM ************** REM REM Source  : AWR tables REM REM Exectution type: Execute from sqlplus or any other tool. REM REM Parameters: No parameters. Uses Last snapshot and the one prior snap REM No implied or explicit warranty REM REM Please send me an email to rshamsud@orainternals.com, if you enhance this script :-) REM  This is a open Source code and it is free to use and modify. REM Version 1.20 REM ------------------------------------------------------------------------------------------------   set colsep '|' set lines 220 alter session set nls_date_format='YYYY-MM-DD HH24:MI'; set pagesize 10000 with redo_data as ( SELECT instance_number,        to_date(to_char(redo_date,'DD-MON-YY-HH24:MI'), 'DD-MON-YY-HH24:MI') redo_dt,        trunc(redo_size/(1024 * 1024),2) redo_size_mb  FROM  (   SELECT dbid, instance_number, redo_date, redo_size , startup_time  FROM  (     SELECT  sysst.dbid,sysst.instance_number, begin_interval_time redo_date, startup_time,   VALUE -     lag (VALUE) OVER     ( PARTITION BY  sysst.dbid, sysst.instance_number, startup_time       ORDER BY begin_interval_time ,sysst.instance_number      ) redo_size   FROM sys.wrh$_sysstat sysst , DBA_HIST_SNAPSHOT snaps WHERE sysst.stat_id =        ( SELECT stat_id FROM sys.wrh$_stat_name WHERE  stat_name='redo size' )   AND snaps.snap_id = sysst.snap_id   AND snaps.dbid =sysst.dbid   AND sysst.instance_number  = snaps.instance_number   AND snaps.begin_interval_time> sysdate-30    ORDER BY snaps.snap_id )   ) ) select  instance_number,  redo_dt, redo_size_mb,     sum (redo_size_mb) over (partition by  trunc(redo_dt)) total_daily,     trunc(sum (redo_size_mb) over (partition by  trunc(redo_dt))/24,2) hourly_rate    from redo_Data order by redo_dt, instance_number /

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

分析到這個(gè)階段,我們還只獲取了那個(gè)時(shí)間段歸檔日志異常(歸檔日志暴增),那么要如何定位到相關(guān)的SQL語(yǔ)句呢?我們可以用下面SQL來定位:在這個(gè)時(shí)間段,哪些對(duì)象有大量數(shù)據(jù)塊變化情況。如下所示,這兩個(gè)對(duì)象(當(dāng)然,對(duì)象有可能是表或索引,這個(gè)案例中,這兩個(gè)對(duì)象其實(shí)是同一個(gè)表和其主鍵索引)有大量的數(shù)據(jù)塊修改情況。基本上我們可以判斷是涉及這個(gè)對(duì)象的DML語(yǔ)句生成了大量的redo  log, 當(dāng)然有可能有些場(chǎng)景會(huì)比較復(fù)雜,不是那么容易定位。

SELECT TO_CHAR(BEGIN_INTERVAL_TIME, 'YYYY-MM-DD HH24') SNAP_TIME,         DHSO.OBJECT_NAME,         SUM(DB_BLOCK_CHANGES_DELTA)                     BLOCK_CHANGED  FROM   DBA_HIST_SEG_STAT DHSS,         DBA_HIST_SEG_STAT_OBJ DHSO,         DBA_HIST_SNAPSHOT DHS  WHERE  DHS.SNAP_ID = DHSS.SNAP_ID         AND DHS.INSTANCE_NUMBER = DHSS.INSTANCE_NUMBER         AND DHSS.OBJ# = DHSO.OBJ#         AND DHSS.DATAOBJ# = DHSO.DATAOBJ#         AND BEGIN_INTERVAL_TIME BETWEEN TO_DATE('2018-03-26 17:00',                                         'YYYY-MM-DD HH24:MI')                                         AND             TO_DATE('2018-03-26 18:00', 'YYYY-MM-DD HH24:MI')  GROUP  BY TO_CHAR(BEGIN_INTERVAL_TIME, 'YYYY-MM-DD HH24'),            DHSO.OBJECT_NAME  HAVING SUM(DB_BLOCK_CHANGES_DELTA) > 0  ORDER  BY SUM(DB_BLOCK_CHANGES_DELTA) DESC;

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

此時(shí),我們可以生成這個(gè)時(shí)間段的AWR報(bào)告,那些產(chǎn)生大量redo log的SQL一般是來自TOP Gets、TOP Execution中某個(gè)DML  SQL語(yǔ)句或一些DML SQL語(yǔ)句,結(jié)合上面SQL定位到的對(duì)象和下面相關(guān)SQL語(yǔ)句,基本上就可以判斷就是下面這兩個(gè)SQL產(chǎn)生了大量的redo  log。(第一個(gè)SQL是調(diào)用包,包里面有對(duì)這個(gè)表做大量的DELETE、INSERT操作)

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

如果你此時(shí)還不能完全斷定,也可以使用下面SQL來輔佐判斷那些SQL生成了大量的redo log。在這個(gè)案例中,  上面AWR報(bào)告中發(fā)現(xiàn)的SQL語(yǔ)句和下面SQL捕獲的SQL基本一致。那么可以進(jìn)一步佐證。

注意,該SQL語(yǔ)句執(zhí)行較慢,執(zhí)行時(shí)需要修改相關(guān)條件:時(shí)間和具體段對(duì)象。

SELECT TO_CHAR(BEGIN_INTERVAL_TIME,'YYYY_MM_DD HH24') WHEN,        DBMS_LOB.SUBSTR(SQL_TEXT,4000,1) SQL,        DHSS.INSTANCE_NUMBER INST_ID,        DHSS.SQL_ID,        EXECUTIONS_DELTA EXEC_DELTA,        ROWS_PROCESSED_DELTA ROWS_PROC_DELTA FROM DBA_HIST_SQLSTAT DHSS,      DBA_HIST_SNAPSHOT DHS,      DBA_HIST_SQLTEXT DHST WHERE UPPER(DHST.SQL_TEXT) LIKE '%<segment_name>%'  --此處用具體的段對(duì)象替換   AND LTRIM(UPPER(DHST.SQL_TEXT)) NOT LIKE 'SELECT%'   AND DHSS.SNAP_ID=DHS.SNAP_ID   AND DHSS.INSTANCE_NUMBER=DHS.INSTANCE_NUMBER   AND DHSS.SQL_ID=DHST.SQL_ID   AND BEGIN_INTERVAL_TIME BETWEEN TO_DATE('2018-03-26 17:00','YYYY-MM-DD HH24:MI')   AND TO_DATE('2018-03-26 18:00','YYYY-MM-DD HH24:MI')

其實(shí)上面分析已經(jīng)基本完全定位到SQL語(yǔ)句,剩下的就是和開發(fā)人員或Support人員溝通、了解是正常業(yè)務(wù)邏輯變更還是異常行為。如果需要進(jìn)一步挖掘深入,我們可以使用日志挖掘工具Log  Miner深入分析。在此不做展開分析。其實(shí)個(gè)人在判斷分析時(shí)生成了正常時(shí)段和出現(xiàn)問題時(shí)段的AWR對(duì)比報(bào)告(WORKLOAD REPOSITORY COMPARE  PERIOD  REPORT),如下所示,其中一些信息也可以供分析、對(duì)比參考。可以為復(fù)雜場(chǎng)景做對(duì)比分析(因?yàn)閺?fù)雜場(chǎng)景,僅僅通過最上面的AWR報(bào)告可能無法準(zhǔn)確定位SQL)

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

此次截圖,沒有截取相關(guān)SQL,其實(shí)就是最上面分析的SQL語(yǔ)句,如果復(fù)雜場(chǎng)景下,非常有用。

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

怎么定位哪些SQL產(chǎn)生了大量的Redo日志

“怎么定位哪些SQL產(chǎn)生了大量的Redo日志”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!

新聞標(biāo)題:怎么定位哪些SQL產(chǎn)生了大量的Redo日志
URL分享:http://www.chinadenli.net/article16/pgcodg.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供軟件開發(fā)App開發(fā)微信小程序外貿(mào)建站面包屑導(dǎo)航微信公眾號(hào)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站托管運(yùn)營(yíng)