這篇文章將為大家詳細(xì)講解有關(guān)python如何實(shí)現(xiàn)在多維數(shù)組中挑選符合條件的全部元素,小編覺得挺實(shí)用的,因此分享給大家做個(gè)參考,希望大家閱讀完這篇文章后可以有所收獲。
問題產(chǎn)生:今天在編寫神經(jīng)網(wǎng)絡(luò)的Cluster作業(yè)時(shí),需要根據(jù)根據(jù)數(shù)據(jù)標(biāo)簽用不同的顏色畫出數(shù)據(jù)的分布情況,由此學(xué)習(xí)到了這種高效的方法。
傳統(tǒng)思路:用for循環(huán)來挑選符合條件的元素,這樣十分浪費(fèi)時(shí)間。
代碼示例:
from sklearn.datasets.samples_generator import make_blobs import numpy as np import matplotlib.pyplot as plt #product 20 samples and divide them in 4 different types X, label_true = make_blobs(n_samples=20,centers=4) print("Data:{:}".format(X)) print("label_true:{:}".format(label_true)) #eliminate the repeated elements labels=np.unique(label_true) print("labels:{:}".format(labels)) #plot fig = plt.figure() ax = fig.add_subplot(1, 1, 1) colors = 'rgbycm' for index,elem in enumerate(labels): position=label_true==elem print("position{:}:{:}".format(index,position)) plt.scatter(X[position,0],X[position,1],label="cluster %d"%elem,color=colors[index%len(colors)]) plt.show()
實(shí)驗(yàn)結(jié)果:
Data:[[ 6.28987299 1.19041843] [ 2.12673463 -1.90647309] [-8.56276424 1.8136798 ] [ 2.42611937 -3.81970786] [ 1.83488662 -3.10733306] [ 6.28320138 -0.24840258] [-6.74802304 1.13642657] [ 2.21681643 6.28894411] [-7.16100601 0.04482262] [ 1.66858847 3.42225284] [ 3.19972789 4.58804196] [-7.37006942 0.57068008] [ 0.52465584 -2.68794047] [ 2.71075921 3.57281778] [ 5.99343237 0.0120798 ] [ 4.28307033 4.28727222] [ 0.73714246 -2.38643522] [ 5.58384782 -0.62066592] [-8.44295576 -0.05933983] [ 5.33991984 1.24833992]] label_true:[0 2 1 2 2 0 1 3 1 3 3 1 2 3 0 3 2 0 1 0] labels:[0 1 2 3] position0:[ True False False False False True False False False False False False False False True False False True False True] position1:[False False True False False False True False True False False True False False False False False False True False] position2:[False True False True True False False False False False False False True False False False True False False False] position3:[False False False False False False False True False True True False False True False True False False False False]
結(jié)果分析:
我們可以看出黃色部分的作用,第一行 position=label_true==elem 的作用是讓position在label_true==elem的位置置為True,反之為False,從而得到的position是一個(gè)True和False的集合,
而第三行 X[position,0],X[position,1] 就是選擇為True的位置上的橫坐標(biāo)和縱坐標(biāo),打印出來。還有點(diǎn)懵?我們用最簡單的數(shù)組來表示
代碼示例
import numpy as np a=np.empty(shape=[0,4], dtype=int) a=np.append(a,[[1,2,3,4],[2,3,4,5],[7,8,9,10]],axis=0) position=[True,False,True] print(a) print(a[position,3])
結(jié)果:
[[ 1 2 3 4] [ 2 3 4 5] [ 7 8 9 10]] [ 4 10]
結(jié)果分析:
顯然這是一個(gè)3行4列的矩陣,我們用position得到的是[a[0],a[2]],然后取a[0]和a[2]的第4個(gè)元素,則為4和10.
關(guān)于“python如何實(shí)現(xiàn)在多維數(shù)組中挑選符合條件的全部元素”這篇文章就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,使各位可以學(xué)到更多知識,如果覺得文章不錯(cuò),請把它分享出去讓更多的人看到。
另外有需要云服務(wù)器可以了解下創(chuàng)新互聯(lián)scvps.cn,海內(nèi)外云服務(wù)器15元起步,三天無理由+7*72小時(shí)售后在線,公司持有idc許可證,提供“云服務(wù)器、裸金屬服務(wù)器、高防服務(wù)器、香港服務(wù)器、美國服務(wù)器、虛擬主機(jī)、免備案服務(wù)器”等云主機(jī)租用服務(wù)以及企業(yè)上云的綜合解決方案,具有“安全穩(wěn)定、簡單易用、服務(wù)可用性高、性價(jià)比高”等特點(diǎn)與優(yōu)勢,專為企業(yè)上云打造定制,能夠滿足用戶豐富、多元化的應(yīng)用場景需求。
名稱欄目:python如何實(shí)現(xiàn)在多維數(shù)組中挑選符合條件的全部元素-創(chuàng)新互聯(lián)
分享鏈接:http://www.chinadenli.net/article10/dcipgo.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供微信公眾號、品牌網(wǎng)站制作、網(wǎng)站改版、網(wǎng)站設(shè)計(jì)公司、外貿(mào)建站、手機(jī)網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容