現(xiàn)在的許多手寫字體識別代碼都是基于已有的mnist手寫字體數據集進行的,而kaggle需要用到網站上給出的數據集并生成測試集的輸出用于提交。這里選擇keras搭建卷積網絡進行識別,可以直接生成測試集的結果,最終結果識別率大概97%左右的樣子。

# -*- coding: utf-8 -*-
"""
Created on Tue Jun 6 19:07:10 2017
@author: Administrator
"""
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
import os
import pandas as pd
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
from keras import backend as K
import tensorflow as tf
# 全局變量
batch_size = 100
nb_classes = 10
epochs = 20
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)
inputfile='F:/data/kaggle/mnist/train.csv'
inputfile2= 'F:/data/kaggle/mnist/test.csv'
outputfile= 'F:/data/kaggle/mnist/test_label.csv'
pwd = os.getcwd()
os.chdir(os.path.dirname(inputfile))
train= pd.read_csv(os.path.basename(inputfile)) #從訓練數據文件讀取數據
os.chdir(pwd)
pwd = os.getcwd()
os.chdir(os.path.dirname(inputfile))
test= pd.read_csv(os.path.basename(inputfile2)) #從測試數據文件讀取數據
os.chdir(pwd)
x_train=train.iloc[:,1:785] #得到特征數據
y_train=train['label']
y_train = np_utils.to_categorical(y_train, 10)
mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #導入數據
x_test=mnist.test.images
y_test=mnist.test.labels
# 根據不同的backend定下不同的格式
if K.image_dim_ordering() == 'th':
x_train=np.array(x_train)
test=np.array(test)
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
test = test.reshape(test.shape[0], 1, img_rows, img_cols)
else:
x_train=np.array(x_train)
test=np.array(test)
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
X_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
test = test.reshape(test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = X_test.astype('float32')
test = test.astype('float32')
x_train /= 255
X_test /= 255
test/=255
print('X_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
print(test.shape[0], 'testOuput samples')
model=Sequential()#model initial
model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]),
padding='same',
input_shape=input_shape)) # 卷積層1
model.add(Activation('relu')) #激活層
model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷積層2
model.add(Activation('relu')) #激活層
model.add(MaxPooling2D(pool_size=pool_size)) #池化層
model.add(Dropout(0.25)) #神經元隨機失活
model.add(Flatten()) #拉成一維數據
model.add(Dense(128)) #全連接層1
model.add(Activation('relu')) #激活層
model.add(Dropout(0.5)) #隨機失活
model.add(Dense(nb_classes)) #全連接層2
model.add(Activation('softmax')) #Softmax評分
#編譯模型
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
#訓練模型
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1)
model.predict(x_test)
#評估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
y_test=model.predict(test)
sess=tf.InteractiveSession()
y_test=sess.run(tf.arg_max(y_test,1))
y_test=pd.DataFrame(y_test)
y_test.to_csv(outputfile)
文章標題:kaggle+mnist實現(xiàn)手寫字體識別-創(chuàng)新互聯(lián)
分享網址:http://www.chinadenli.net/article40/djhseo.html
成都網站建設公司_創(chuàng)新互聯(lián),為您提供手機網站建設、移動網站建設、域名注冊、云服務器、定制網站、網頁設計公司
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內容